
秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 1 of 16

Tina Linux NPU VIPLite API Description

Version Date Reviser Content

1.0 2022.09.14 AWA1911 First edition, npu function API description

vip_init() Description:
Initializes the VIP hardware and the VIPLite software environment. In detail, this API
resets and initializes
the VIP hardware to a ready state to accept commands. It also initializes the software
environment, such
as video memory heap, power management, and MMU table.
Call this API before the application calls any other VIPLite API to use the VIP
hardware. After the
application completes, call vip_destroy().
You can call the vip_init() API multiple times. However, the number of vip_destroy()
calls should
match the number of vip_init() calls. Only the first vip_init() call and the last
vip_destroy()
call are executed. Other vip_init() and vip_destroy() calls in between do not trigger
initialize or
destroy operation.
Syntax:
vip_status_e vip_init(
void
);
Parameters:
None
Returns:
vip_status_e

vip_destroy() Description:
Terminates the VIPLite driver, releases the resources requested by vip_init(), and
shuts down the VIP
hardware.
Call this API after an application completes. After this API is executed, call vip_init()



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 2 of 16

before any other
VIPLite API.
You can call the vip_init() API multiple times. However, the number of vip_destroy()
calls should
match the number of vip_init() calls. Only the first vip_init() call and the last
vip_destroy()
call are executed. Other vip_init() and vip_destroy() calls in between do not trigger
initialize or
destroy operation.
Syntax:
vip_status_e vip_destroy(
void
);
Parameters:
None
Returns:
vip_status_e

vip_create_network() Description:
Creates a network from the given binary. The binary is binary large object (BLOB)
data generated by the
graph binary generator. The VIPLite driver can interpret it to create a network object.
Syntax:
vip_status_e vip_create_network(
void
*data,
vip_uint32_t
size_of_data,
vip_enum
type,
vip_network
*network
);
Parameters:
IN
*data
The pointer to the graph binary.
IN
size_of_data
The size in bytes of the graph binary.
IN
type
The network type.
The supported types are defined in the
vip_create_network_type_e enumeration.



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 3 of 16

OUT
*network
The pointer to receive the created network object if the network is
created successfully.
If the network creation fails, VIP_NULL is returned.
Returns:
vip_status_e

vip_weak_dup_network(
)

Description:
Creates a new network by duplicating the command buffer of an existing network
(source). The network
coefficients are not duplicated.
Before you call this API, make sure that the source network is prepared by calling
vip_prepare_network().
This API is useful when you need to add a multi-input network to a network group.
For details, see Section
3.2.19, vip_add_network().
Note: Do not destroy the source network if duplicated networks are still in use. For
more information, see Section
3.2.3, vip_destroy_network().
Syntax:
vip_status_e vip_weak_dup_network(
vip_network
network
vip_network
*dup_network
);
Parameters:
IN
network
An opaque handle to the source network.
OUT
dup_network
An opaque handle to the target network.
Returns:
vip_status_e

vip_destroy_network() Description:
Destroys a network. This API releases all relevant resources allocated to the network.
After this API is executed for a specified network, the command buffers of the
networks duplicated from
the specified network are also released. However, the coefficients of the duplicated
networks are
retained.
Syntax:



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 4 of 16

vip_status_e vip_destroy_network(
vip_network
network
);
Parameters:
IN
network
An opaque handle to the network to be destroyed.
Returns:
vip_status_e

vip_query_network() Description:
Queries a property of a network.
Syntax:
vip_status_e vip_query_network(
vip_network
network,
vip_enum
property,
void
*value
);
Parameters:
IN
network
An opaque handle to the network to be queried.
IN
property
The network property to be queried.
The following properties are available for query:

VIP_NETWORK_PROP_LAYER_COUNT
VIP_NETWORK_PROP_INPUT_COUNT
VIP_NETWORK_PROP_OUTPUT_COUNT
VIP_NETWORK_PROP_NETWORK_NAME
VIP_NETWORK_PROP_READ_REG_IRQ
VIP_NETWORK_PROP_ADDRESS_INFO
VIP_NETWORK_PROP_MEMORY_POOL_SIZE
VIP_NETWORK_PROP_PROFILING

For details, see Section 2.2.5, vip_network_property_e.
OUT
*value
A pointer in memory to store the returned property value.
The data type of the value varies according to the property queried.
Returns:

vip_set_network() Description:



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 5 of 16

Configures a network.
Before you can run the network, you need to validate the configurations by calling
vip_prepare_network().
Syntax:
vip_status_e vip_set_network(
vip_network
network,
vip_enum
property,
void
*value
);
Parameters:
IN
network
An opaque handle to the network to be configured.
IN
property
The network property to be configured.
The supported properties are:

VIP_NETWORK_PROP_CHANGE_PPU_PARAM
VIP_NETWORK_PROP_SET_MEMORY_POOL
VIP_NETWORK_PROP_SET_DEVICE_ID
VIP_NETWORK_PROP_SET_PRIORITY

For details, see Section 2.2.5, vip_network_property_e.
IN
*value
A pointer in memory to the property value.
Returns:
vip_status_e

vip_prepare_network() Description:
Validates the configurations of a network. This API allocates internal memory
resources to the network,
deploys resources for all operations to the internal memory pool, allocates and patches
a command
buffer for the resources in the internal memory pool. After this API is executed
successfully, the network
is considered prepared for running on VIP hardware.
Prior to this API, use the vip_set_network() API to configure the network. If this API
is called more
than once with the network configurations unchanged, the driver silently ignores the
API calls except for
the first call.
Syntax:



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 6 of 16

vip_status_e vip_prepare_network(
vip_network
network
);
Parameters:
IN
network
An opaque handle to the network to be prepared.
Returns:
vip_status_e

vip_query_input() Description:
Queries the properties of a network input.
Syntax:
vip_status_e vip_query_input(
vip_network
network,
vip_uint32_t
index,
vip_enum
property,
void
*value
);
Parameters:
IN
network
An opaque handle to the network to be queried.
IN
index
The index of the network input to be queried.
IN
property
The input buffer property to be queried.
The following properties are available for query:

VIP_BUFFER_PROP_QUANT_FORMAT
VIP_BUFFER_PROP_NUM_OF_DIMENSION
VIP_BUFFER_PROP_SIZES_OF_DIMENSION
VIP_BUFFER_PROP_DATA_FORMAT
VIP_BUFFER_PROP_FIXED_POINT_POS
VIP_BUFFER_PROP_TF_SCALE
VIP_BUFFER_PROP_TF_ZERO_POINT
VIP_BUFFER_PROP_NAME
VIP_BUFFER_PROP_DATA_TYPE

For details, see Section 2.2.6, vip_buffer_property_e.



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 7 of 16

OUT
*value
A pointer in memory to store the returned property value.
Returns:
vip_status_e

vip_query_output() Description:
Queries a property of a network output.
Syntax:
vip_status_e vip_query_output(
vip_network
network,
vip_uint32_t
index,
vip_enum
property,
void
*value
);
Parameters:
IN
network
An opaque handle to the network to be queried.
IN
index
The index of the network output to be queried.
IN
property
The output buffer property to be queried.
The following properties are available for query:

VIP_BUFFER_PROP_QUANT_FORMAT
VIP_BUFFER_PROP_NUM_OF_DIMENSION
VIP_BUFFER_PROP_SIZES_OF_DIMENSION
VIP_BUFFER_PROP_DATA_FORMAT
VIP_BUFFER_PROP_FIXED_POINT_POS
VIP_BUFFER_PROP_TF_SCALE
VIP_BUFFER_PROP_TF_ZERO_POINT
VIP_BUFFER_PROP_NAME
VIP_BUFFER_PROP_DATA_TYPE

For details, see Section 2.2.6, vip_buffer_property_e.
OUT
*value
A pointer in memory to store the returned property value.
Returns:
vip_status_e



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 8 of 16

vip_set_input() Description:
Attaches an input buffer to a network. When attaching the input buffer to the network,
the VIPLite driver
patches the network command buffer to fill in the input buffer.
You can also call this API to update the input buffers. The update takes effect from
the next network
execution.
Before attaching input buffers to a network, make sure that the network is prepared
using the
vip_prepare_network() API.
Before using vip_run_network() to run a network, make sure that each valid network
input is
attached with a buffer. Otherwise, VIP_ERROR_MISSING_INPUT_OUTPUT is
returned once the
vip_run_network() API is called.
Syntax:
vip_status_e vip_set_input(
vip_network
network,
vip_uint32_t
index,
vip_buffer
input
);
Parameters:
IN
network
An opaque handle to the network to be configured.
IN
index
The index of the network input to be configured.
IN
input
An opaque handle to the buffer to be attached to the network
input.
Returns:
vip_status_e

vip_set_output() Description:
Attaches the output buffer to a network. When attaching the output buffer to the
network, the VIPLite
driver patches the network command buffer to fill in the output buffer.
You can also call this API to update the output buffer. The update takes effect from
the next network
execution.



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 9 of 16

Before attaching the output buffer to a network, make sure that the network is
prepared using the
vip_prepare_network() API.
Before using vip_run_network() to run a network, make sure that the network output
is attached
with a buffer. Otherwise, VIP_ERROR_MISSING_INPUT_OUTPUT is returned
once the
vip_run_network() API is called.
Syntax:
vip_status_e vip_set_output(
vip_network
network,
vip_uint32_t
index,
vip_buffer
output
);
Parameters:
IN
network
An opaque handle to the network to be configured.
IN
index
The index of the network output to be configured.
IN
output
An opaque handle to the buffer to be attached to the network output.
Returns:
vip_status_e

vip_run_network() Description:
Commits an execution task for the network. The VIP hardware executes the task of
the highest priority
among the committed tasks. You can call this API multiple times.
The API execution status is returned after the VIP hardware completes the execution.
If you need the
status to be immediately returned without waiting for the execution to complete, use
the
vip_trigger_network() API.
To set the network priority, use the vip_set_network() API.
Before running a network, make sure that the network is prepared using
vip_prepare_network(). In
addition, make sure that each network input and the network output are attached with
buffers by using



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 10 of 16

vip_set_input() and vip_set_output(). Otherwise,
VIP_ERROR_MISSING_INPUT_OUTPUT is
returned once vip_run_network() is called.
To run multiple networks in a group, use vip_run_group() or vip_trigger_group().
Syntax:
vip_status_e vip_run_network(
vip_network
network
);
Parameters:
IN
network
An opaque handle to the network to be run.
Returns:
vip_status_e

vip_trigger_network() Description:
Commits an execution task for the network. The VIP hardware executes the task of
the highest priority
among the committed tasks. You can call this API multiple times.
The API execution status is returned immediately without waiting for the hardware to
complete the
execution. To acquire the status, call vip_wait_network() for synchronization. If you
need the status
to be returned after the VIP hardware completes the execution, use the
vip_run_network() API.
To set the network priority, use the vip_set_network() API.
Before running a network, make sure that the network is prepared using
vip_prepare_network(). In
addition, make sure that each network input and the network output are attached with
buffers by using
vip_set_input() and vip_set_output(). Otherwise,
VIP_ERROR_MISSING_INPUT_OUTPUT is
returned once vip_trigger_network() is called.
To run multiple networks in a group, use vip_run_group() or vip_trigger_group().
Syntax:
vip_status_e vip_trigger_network(
vip_network
network
);
Parameters:
IN
network
An opaque handle to the network to be executed.



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 11 of 16

Returns:
vip_status_e

vip_wait_network() Description:
Waits for the VIP hardware to finish the inference for the specified network.
Call this API after vip_trigger_network() is called.
Syntax:
vip_status_e vip_wait_network(
vip_network
network
);
Parameters:
IN
network
An opaque handle to the network.
Returns:
vip_status_e

vip_finish_network() Description:
Releases the resources of a prepared network. After this API is called, all internal
memory resources
allocated to the network are released with the network not destroyed. If the network is
no long needed,
destroy it by using the vip_destroy_network() API.
Call the vip_finish_network() API to finish a prepared network only if the network is
no longer used
or the remaining system resources are limited for other networks. If the network is
still needed, do not
call this API because the preparation of a network is time consuming.
After a vip_finish_network() call is successfully executed for a prepared network,
repeated calls are
silently ignored until the network is re-prepared with the vip_prepare_network() API.
For an
unprepared network, vip_finish_network() calls are silently ignored.
Important: Do not call the vip_finish_network() API for a running network.
Syntax:
vip_status_e vip_finish_network(
vip_network
network
);
Parameters:
IN
network
An opaque handle to the network to be finished.
Returns:
vip_status_e



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 12 of 16

vip_create_buffer() Description:
Creates a VIP buffer of the specified size with no padding between lines, slices, or
batches.
Syntax:
vip_status_e vip_create_buffer(
vip_buffer_create_params_t
*create_param,
vip_uint32_t
size_of_param,
vip_buffer
*buffer
);
Parameters:
IN
*create_param
The pointer to a vip_buffer_create_params_t structure.
IN
size_of_param
The size of the data structure created by *create_param in bytes.
OUT
*buffer
The pointer to receive the created buffer object if the VIP buffer is
created successfully.
If the VIP buffer creation fails, VIP_NULL is returned.
Returns:
vip_status_e
If VIP_SUCCESS is returned, a VIP buffer is created successfully.
If VIP_ERROR_<error_type> is returned, no buffer is created.

vip_create_buffer_from_
handle()

Description:
Creates a VIP buffer from a handle and maps the handle associated physical address
to the buffer.
Before using this API, enable the VIP MMU. Otherwise, the API returns
VIP_ERROR_FAILURE.
Syntax:
vip_status_e vip_create_buffer_from_handle(
vip_buffer_create_params_t
*create_param,
vip_ptr
handle_logical,
vip_uint32_t
handle_size,
vip_buffer
*buffer



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 13 of 16

)
Parameters:
IN
*create_param
A pointer to a vip_buffer_create_params_t structure.
IN
handle_logical
The address of the handle from which the new VIP buffer is to be
created.
For a non-real-time Linux operating system, specify a logical
address. The address is allocated by the Linux malloc() function.
For a real-time operating system, specify a physical address.
Note: Address alignment to 64 bytes is recommended.
IN
handle_size
The size of the memory to which the handle points.
Note: Size alignment to 64 bytes is recommended.
OUT
*buffer
The pointer to receive the created buffer object if the VIP buffer is
created successfully.
If the VIP buffer creation fails, VIP_NULL is returned.
Returns:
vip_status_e
If VIP_SUCCESS is returned, a VIP buffer is created successfully.
If VIP_ERROR_<error_type> is returned, no buffer is created.

vip_destroy_buffer()
Description:
Destroys a VIP buffer and frees the memory used by the buffer.
Syntax:
vip_status_e vip_destroy_buffer(
vip_buffer
buffer
);
Parameters:
IN
buffer
The opaque handle of the buffer to be destroyed.
Returns:
vip_status_e

vip_map_buffer() Description:
Creates a pointer to the specified VIP buffer. The pointer can be used by applications
to access the buffer.



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 14 of 16

Syntax:
void *vip_map_buffer(
vip_buffer
buffer
);
Parameters:
IN
buffer
The opaque handle of the buffer for which a pointer is to be
created.
Returns:
A pointer to the buffer that applications can use to read or write the buffer data

vip_unmap_buffer() Description:
Releases the pointer that applications use to access a VIP buffer.
Syntax:
vip_status_e *vip_unmap_buffer(
vip_buffer
buffer
);
Parameters:
IN
buffer
The opaque handle of the buffer whose pointer is to be released.
Returns:
vip_status_e

vip_get_buffer_size() Description:
Retrieves the size of the buffer in bytes.
Syntax:
vip_uint32_t vip_get_buffer_size(
vip_buffer
buffer
);
Parameters:
IN
buffer
The opaque handle of the buffer whose size is requested.
Returns:
vip_uint32_t
The buffer size in bytes.

vip_flush_buffer() Description:
Flushes or invalidates the cache of a VIP buffer created from the vip_create_buffer()



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 15 of 16

or
vip_create_buffer_from_handle() API.
Call this API in the following scenarios:

If the VIP buffer in use contains a CPU cache, flush the cache with this API before
calling
vip_run_network().

After return from vip_wait_network() or vip_run_network(), use this API to
invalidate the
buffer cache.
Syntax:
vip_status_e vip_flush_buffer(
vip_buffer
buffer,
vip_buffer_operation_type_e
type
);
Parameters:
IN
buffer
The opaque handle of the buffer whose cache is to be flushed or
invalidated.
IN
type
The buffer cache operation to be executed on the buffer.
The buffer catch operations are defined in the
vip_buffer_operation_type_e enumeration.
Returns:
vip_status_e

Running a Single
Network

The procedure to run a network is detailed as follows:
1. Call vip_init() to initialize the VIPLite engine, including the software and the
hardware.
This API resets the hardware to get it ready for use and initializes the software
resources. It sets up the video
memory and other hardware resources, such as interrupt and register memory, for
VIPLite to use.
2. Read the network binary graph (NBG) data from a file or memory.
3. Create a network with the vip_create_network() API.
This API performs a sanity check on the NBG data. Therefore, it is recommended that
you check the returned
error code to verify that the network is successfully generated.
4. Query the input and output properties by using vip_query_input() and
vip_query_output().
This step is recommended to avoid errors caused by mismatched input or output



秘密▲5年

全志科技版权所有，侵权必究

Copyright © 2018 by Allwinner. All rights reserved Page 16 of 16

properties.
5. Create input and output buffers with the following APIs: vip_create_buffer(),
vip_create_buffer_from_handle(), vip_create_buffer_from_physical(), and
vip_create_buffer_from_fd().
6. (Optional) Configure the network properties by using vip_set_network().
7. Prepare the network command buffer with the vip_prepare_network() API.
It is recommended that you check the error code returned by this API. This is because
the API may fail because
of resource limitation, for example, out of memory.
8. Load data from the input and output buffers with the assistance of the
vip_map_buffer() API.
9. Attach the input and output buffers to the network by using vip_set_input() and
vip_set_output().
10. Run the network with the vip_run_network() or vip_trigger_network() API.

If vip_run_network() is used, it returns together with the result after the VIP hardware
completes the
execution.

If vip_trigger_network() is used, it immediately returns without waiting for the VIP
hardware to
complete execution. This optimizes the CPU usage if the CPU workload is heavy.
In this case, when the CPU requires the API result, call vip_wait_network() for
synchronization.
Note:Multiple networks can be created. However, only one network can be run at a
time. The application runs the
networks one by one according to the network priorities configured with the
vip_set_network() API.
11. Flush the network execution result from the CPU cache to the output buffer by
using vip_flush_buffer().
12. Check the network execution result from the output buffer with the assistance of
vip_map_buffer().
13. (Optional) Repeat steps 6 to 12 to run the network multiple times.
14. Call vip_finish_network() to free the internal memory allocated to the network.
15. Call vip_destroy_network() to release all the other resources allocated to the
network.
16. Call vip_destroy_buffer() to free the memory allocated to the input and output
buffers.
17. Call vip_destroy() to release the VIPLite resources and exit.


	Tina Linux NPU VIPLite API Description

