
©ISO/IEC ISO/IEC 9899:1999 (E)

Contents
Foreword . xi

Introduction . xiv

1. Scope . 1

2. Normative references . 2

3. Terms, definitions, and symbols. 3

4. Conformance . 7

5. Environment . 9
5.1 Conceptual models . 9

5.1.1 Translation environment 9
5.1.2 Execution environments 11

5.2 Environmental considerations 17
5.2.1 Character sets . 17
5.2.2 Character display semantics 19
5.2.3 Signals and interrupts 20
5.2.4 Environmental limits 20

6. Language . 29
6.1 Notation . 29
6.2 Concepts . 29

6.2.1 Scopes of identifiers 29
6.2.2 Linkages of identifiers 30
6.2.3 Name spaces of identifiers 31
6.2.4 Storage durations of objects 32
6.2.5 Types . 33
6.2.6 Representations of types. 37
6.2.7 Compatible type and composite type. 40

6.3 Conversions . 42
6.3.1 Arithmetic operands 42
6.3.2 Other operands 46

6.4 Lexical elements . 49
6.4.1 Keywords . 50
6.4.2 Identifiers . 51
6.4.3 Universal character names 53
6.4.4 Constants . 54
6.4.5 String literals . 62
6.4.6 Punctuators . 63
6.4.7 Header names . 64
6.4.8 Preprocessing numbers 65
6.4.9 Comments . 66

6.5 Expressions . 67

Contents iii

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.1 Primary expressions 69
6.5.2 Postfix operators 69
6.5.3 Unary operators 78
6.5.4 Cast operators . 81
6.5.5 Multiplicative operators 82
6.5.6 Additive operators 82
6.5.7 Bitwise shift operators 84
6.5.8 Relational operators. 85
6.5.9 Equality operators 86
6.5.10 BitwiseAND operator 87
6.5.11 Bitwise exclusiveOR operator 88
6.5.12 Bitwise inclusiveOR operator 88
6.5.13 LogicalAND operator 89
6.5.14 LogicalOR operator 89
6.5.15 Conditional operator 90
6.5.16 Assignment operators 91
6.5.17 Comma operator 94

6.6 Constant expressions. 95
6.7 Declarations . 97

6.7.1 Storage-class specifiers 98
6.7.2 Type specifiers . 99
6.7.3 Type qualifiers . 108
6.7.4 Function specifiers 112
6.7.5 Declarators . 114
6.7.6 Type names . 122
6.7.7 Type definitions 123
6.7.8 Initialization . 125

6.8 Statements and blocks . 131
6.8.1 Labeled statements 131
6.8.2 Compound statement 132
6.8.3 Expression and null statements 132
6.8.4 Selection statements 133
6.8.5 Iteration statements 135
6.8.6 Jump statements 136

6.9 External definitions . 140
6.9.1 Function definitions 141
6.9.2 External object definitions 143

6.10 Preprocessing directives 145
6.10.1 Conditional inclusion 147
6.10.2 Source file inclusion 149
6.10.3 Macro replacement 151
6.10.4 Line control . 158
6.10.5 Error directive . 159
6.10.6 Pragma directive 159

iv Contents

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10.7 Null directive . 160
6.10.8 Predefined macro names. 160
6.10.9 Pragma operator 161

6.11 Future language directions 163
6.11.1 Floating types . 163
6.11.2 Linkages of identifiers 163
6.11.3 External names 163
6.11.4 Character escape sequences. 163
6.11.5 Storage-class specifiers 163
6.11.6 Function declarators 163
6.11.7 Function definitions 163
6.11.8 Pragma directives 163
6.11.9 Predefined macro names. 163

7. Library .164
7.1 Introduction . 164

7.1.1 Definitions of terms 164
7.1.2 Standard headers. 165
7.1.3 Reserved identifiers 166
7.1.4 Use of library functions 166

7.2 Diagnostics<assert.h> 169
7.2.1 Program diagnostics 169

7.3 Complex arithmetic<complex.h> 170
7.3.1 Introduction . 170
7.3.2 Conventions . 171
7.3.3 Branch cuts . 171
7.3.4 TheCX_LIMITED_RANGEpragma 171
7.3.5 Trigonometric functions 172
7.3.6 Hyperbolic functions 174
7.3.7 Exponential and logarithmic functions 176
7.3.8 Power and absolute-value functions 177
7.3.9 Manipulation functions 178

7.4 Character handling<ctype.h> 181
7.4.1 Character classification functions 181
7.4.2 Character case mapping functions. 184

7.5 Errors<errno.h> . 186
7.6 Floating-point environment<fenv.h> 187

7.6.1 TheFENV_ACCESSpragma 189
7.6.2 Floating-point exceptions 190
7.6.3 Rounding . 192
7.6.4 Environment . 194

7.7 Characteristics of floating types<float.h> 196
7.8 Format conversion of integer types<inttypes.h> 197

7.8.1 Macros for format specifiers 197
7.8.2 Functions for greatest-width integer types. 198

Contents v

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.9 Alternative spellings<iso646.h> 201
7.10 Sizes of integer types<limits.h> 202
7.11 Localization<locale.h> 203

7.11.1 Locale control . 204
7.11.2 Numeric formatting convention inquiry 205

7.12 Mathematics<math.h> 211
7.12.1 Treatment of error conditions 213
7.12.2 TheFP_CONTRACTpragma 214
7.12.3 Classification macros 215
7.12.4 Trigonometric functions 217
7.12.5 Hyperbolic functions 220
7.12.6 Exponential and logarithmic functions 222
7.12.7 Power and absolute-value functions 227
7.12.8 Error and gamma functions. 229
7.12.9 Nearest integer functions. 230
7.12.10 Remainder functions 234
7.12.11 Manipulation functions 235
7.12.12 Maximum, minimum, and positive difference functions . . . 237
7.12.13 Floating multiply-add 238
7.12.14 Comparison macros. 239

7.13 Nonlocal jumps<setjmp.h> 242
7.13.1 Save calling environment 242
7.13.2 Restore calling environment 243

7.14 Signal handling<signal.h> 245
7.14.1 Specify signal handling 246
7.14.2 Send signal . 247

7.15 Variable arguments<stdarg.h> 248
7.15.1 Variable argument list access macros. 248

7.16 Boolean type and values<stdbool.h> 252
7.17 Common definitions<stddef.h> 253
7.18 Integer types<stdint.h> 254

7.18.1 Integer types . 254
7.18.2 Limits of specified-width integer types 256
7.18.3 Limits of other integer types 258
7.18.4 Macros for integer constants 259

7.19 Input/output<stdio.h> 261
7.19.1 Introduction . 261
7.19.2 Streams . 263
7.19.3 Files . 265
7.19.4 Operations on files 267
7.19.5 File access functions 269
7.19.6 Formatted input/output functions 273
7.19.7 Character input/output functions. 294
7.19.8 Direct input/output functions 299

vi Contents

©ISO/IEC ISO/IEC 9899:1999 (E)

7.19.9 File positioning functions 300
7.19.10 Error-handling functions 303

7.20 General utilities<stdlib.h> 305
7.20.1 Numeric conversion functions. 306
7.20.2 Pseudo-random sequence generation functions. 311
7.20.3 Memory management functions. 312
7.20.4 Communication with the environment 314
7.20.5 Searching and sorting utilities. 317
7.20.6 Integer arithmetic functions 319
7.20.7 Multibyte/wide character conversion functions. 320
7.20.8 Multibyte/wide string conversion functions 322

7.21 String handling<string.h> 324
7.21.1 String function conventions. 324
7.21.2 Copying functions 324
7.21.3 Concatenation functions 326
7.21.4 Comparison functions 327
7.21.5 Search functions 329
7.21.6 Miscellaneous functions 332

7.22 Type-generic math<tgmath.h> 334
7.23 Date and time<time.h> 337

7.23.1 Components of time 337
7.23.2 Time manipulation functions 338
7.23.3 Time conversion functions 340

7.24 Extended multibyte and wide character utilities<wchar.h> 347
7.24.1 Introduction . 347
7.24.2 Formatted wide character input/output functions. 348
7.24.3 Wide character input/output functions 366
7.24.4 General wide string utilities 370
7.24.5 Wide character time conversion functions. 384
7.24.6 Extended multibyte/wide character conversion utilities. . . . 385

7.25 Wide character classification and mapping utilities<wctype.h> . . . 392
7.25.1 Introduction . 392
7.25.2 Wide character classification utilities. 393
7.25.3 Wide character case mapping utilities. 398

7.26 Future library directions 400
7.26.1 Complex arithmetic<complex.h> 400
7.26.2 Character handling<ctype.h> 400
7.26.3 Errors<errno.h> 400
7.26.4 Format conversion of integer types<inttypes.h> 400
7.26.5 Localization<locale.h> 400
7.26.6 Signal handling<signal.h> 400
7.26.7 Boolean type and values<stdbool.h> 400
7.26.8 Integer types<stdint.h> 400
7.26.9 Input/output<stdio.h> 401

Contents vii

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.26.10 General utilities<stdlib.h> 401
7.26.11 String handling<string.h> 401
7.26.12 Extended multibyte and wide character utilities

<wchar.h> . 401
7.26.13 Wide character classification and mapping utilities

<wctype.h> . 401

Annex A (informative) Language syntax summary 402
A.1 Lexical grammar . 402
A.2 Phrase structure grammar. 408
A.3 Preprocessing directives 415

Annex B (informative) Library summary 417
B.1 Diagnostics<assert.h> 417
B.2 Complex<complex.h> 417
B.3 Character handling<ctype.h> 419
B.4 Errors<errno.h> . 419
B.5 Floating-point environment<fenv.h> 419
B.6 Characteristics of floating types<float.h> 420
B.7 Format conversion of integer types<inttypes.h> 420
B.8 Alternative spellings<iso646.h> 421
B.9 Sizes of integer types<limits.h> 421
B.10 Localization<locale.h> 421
B.11 Mathematics<math.h> 421
B.12 Nonlocal jumps<setjmp.h> 426
B.13 Signal handling<signal.h> 426
B.14 Variable arguments<stdarg.h> 426
B.15 Boolean type and values<stdbool.h> 426
B.16 Common definitions<stddef.h> 427
B.17 Integer types<stdint.h> 427
B.18 Input/output<stdio.h> 427
B.19 General utilities<stdlib.h> 429
B.20 String handling<string.h> 431
B.21 Type-generic math<tgmath.h> 432
B.22 Date and time<time.h> 432
B.23 Extended multibyte/wide character utilities<wchar.h> 433
B.24 Wide character classification and mapping utilities<wctype.h> . . . 435

Annex C (informative) Sequence points. 437

Annex D (normative) Universal character names for identifiers. 438

Annex E (informative) Implementation limits 440

Annex F (normative) IEC 60559 floating-point arithmetic. 442
F.1 Introduction . 442
F.2 Types .442
F.3 Operators and functions 443

viii Contents

©ISO/IEC ISO/IEC 9899:1999 (E)

F.4 Floating to integer conversion 445
F.5 Binary-decimal conversion 445
F.6 Contracted expressions. 446
F.7 Floating-point environment 446
F.8 Optimization . 449
F.9 Mathematics<math.h> 452

Annex G (informative) IEC 60559-compatible complex arithmetic. 465
G.1 Introduction . 465
G.2 Types .465
G.3 Conventions . 465
G.4 Conversions . 466
G.5 Binary operators . 466
G.6 Complex arithmetic<complex.h> 470
G.7 Type-generic math<tgmath.h> 478

Annex H (informative) Language independent arithmetic. 479
H.1 Introduction . 479
H.2 Types .479
H.3 Notification . 483

Annex I (informative) Common warnings 485

Annex J (informative) Portability issues. 487
J.1 Unspecified behavior . 487
J.2 Undefined behavior . 490
J.3 Implementation-defined behavior. 503
J.4 Locale-specific behavior 510
J.5 Common extensions . 511

Bibliography .514

Index .517

Contents ix

ISO/IEC 9899:1999 (E) ©ISO/IEC

x Contents

©ISO/IEC ISO/IEC 9899:1999 (E)

Foreword
1 ISO (the International Organization for Standardization) and IEC (the

International Electrotechnical Commission) form the specialized system for
worldwide standardization. National bodies that are member of ISO or IEC
participate in the development of International Standards through technical
committees established by the respective org anization to deal with
particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take
part in the work.

2 International Standards are drafted in accordance with the rules given in the
ISO/IEC Directives, Part 3.

3 In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1. Draft International Standards
adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at
least 75% of the national bodies casting a vote.

4 International Standard ISO/IEC 9899 was prepared by Joint Technical
Committee ISO/IEC JTC 1,Information technology, Subcommittee SC 22,
Programming languages, their environments and system software
interfaces. The Working Group responsible for this standard (WG 14)
maintains a site on the World Wide Web at
http://www.dkuug.dk/JTC1/SC22/WG14/ containing additional
information relevant to this standard such as a Rationale for many of the
decisions made during its preparation and a log of Defect Reports and
Responses.

5 This second edition cancels and replaces the first edition,
ISO/IEC 9899:1990, as amended and corrected by
ISO/IEC 9899/COR1:1994, ISO/IEC 9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996. Major changes from the previous edition
include:

— restricted character set support via digraphs and<iso646.h>
(originally specified in AMD1)

— wide character library support in<wchar.h> and <wctype.h>
(originally specified in AMD1)

— more precise aliasing rules via effective type

— restricted pointers

— variable-length arrays

Foreword xi

ISO/IEC 9899:1999 (E) ©ISO/IEC

— flexible array members

— static and type qualifiers in parameter array declarators

— complex (and imaginary) support in<complex.h>

— type-generic math macros in<tgmath.h>

— the long long int type and library functions

— increased minimum translation limits

— additional floating-point characteristics in<float.h>

— remove implicit int

— reliable integer division

— universal character names (\u and\U)

— extended identifiers

— hexadecimal floating-point constants and%aand %A printf /scanf
conversion specifiers

— compound literals

— designated initializers

— // comments

— extended integer types and library functions in<inttypes.h> and
<stdint.h>

— remove implicit function declaration

— preprocessor arithmetic done inintmax_t /uintmax_t

— mixed declarations and code

— new block scopes for selection and iteration statements

— integer constant type rules

— integer promotion rules

— vararg macros

— thevscanf family of functions in<stdio.h> and<wchar.h>

— additional math library functions in<math.h>

— floating-point environment access in<fenv.h>

— IEC 60559 (also known as IEC 559 or IEEE arithmetic) support

— trailing comma allowed inenum declaration

— %lf conversion specifier allowed inprintf

xii Foreword

©ISO/IEC ISO/IEC 9899:1999 (E)

— inline functions

— thesnprintf family of functions in<stdio.h>

— boolean type in<stdbool.h>

— idempotent type qualifiers

— empty macro arguments

— new struct type compatibility rules (tag compatibility)

— additional predefined macro names

— _Pragma preprocessing operator

— standard pragmas

— _ _func_ _ predefined identifier

— VA_COPYmacro

— additionalstrftime conversion specifiers

— LIA compatibility annex

— deprecateungetc at the beginning of a binary file

— remove deprecation of aliased array parameters

6 Annexes D and F form a normative part of this standard; annexes A, B, C,
E, G, H, I, J, the bibliography, and the index are for information only. In
accordance with Part 3 of the ISO/IEC Directives, this foreword, the
introduction, notes, footnotes, and examples are for information only.

Foreword xiii

ISO/IEC 9899:1999 (E) ©ISO/IEC

Introduction
1 With the introduction of new devices and extended character sets, new

features may be added to this International Standard. Subclauses in the
language and library clauses warn implementors and programmers of
usages which, though valid in themselves, may conflict with future
additions.

2 Certain features areobsolescent, which means that they may be considered
for withdrawal in future revisions of this International Standard. They are
retained because of their widespread use, but their use in new
implementations (for implementation features) or new programs (for
language [6.11] or library features [7.26]) is discouraged.

3 This International Standard is divided into four major subdivisions:

— preliminary elements (clauses 1−4);

— the characteristics of environments that translate and execute C
programs (clause 5);

— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

4 Examples are provided to illustrate possible forms of the constructions
described. Footnotes are provided to emphasize consequences of the rules
described in that subclause or elsewhere in this International Standard.
References are used to refer to other related subclauses. Recommendations
are provided to give advice or guidance to implementors. Annexes provide
additional information and summarize the information contained in this
International Standard. A bibliography lists documents that were referred
to during the preparation of the standard.

5 The language clause (clause 6) is derived from ‘‘The C Reference Manual’’.

6 The library clause (clause 7) is based on the1984 /usr/group Standard.

xiv Introduction

INTERNATIONAL STANDARD ©ISO/IEC ISO/IEC 9899:1999 (E)

Programming languages — C

1. Scope
1 This International Standard specifies the form and establishes the interpretation of

programs written in the C programming language.1) It specifies

— the representation of C programs;

— the syntax and constraints of the C language;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.

2 This International Standard does not specify

— the mechanism by which C programs are transformed for use by a data-processing
system;

— the mechanism by which C programs are invoked for use by a data-processing
system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C
program;

1) This International Standard is designed to promote the portability of C programs among a variety of
data-processing systems. It is intended for use by implementors and programmers.

§1 General 1

ISO/IEC 9899:1999 (E) ©ISO/IEC

— the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

2. Normative references
1 The following normative documents contain provisions which, through reference in this

text, constitute provisions of this International Standard. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.
However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative
document referred to applies. Members of ISO and IEC maintain registers of currently
valid International Standards.

2 ISO 31−11:1992,Quantities and units — Part 11: Mathematical signs and symbols for
use in the physical sciences and technology.

3 ISO/IEC 646,Information technology —ISO 7-bit coded character set for information
interchange.

4 ISO/IEC 2382−1:1993,Information technology — Vocabulary — Part 1: Fundamental
terms.

5 ISO 4217,Codes for the representation of currencies and funds.

6 ISO 8601, Data elements and interchange formats — Information interchange —
Representation of dates and times.

7 ISO/IEC 10646 (all parts),Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

8 IEC 60559:1989,Binary floating-point arithmetic for microprocessor systems(previously
designated IEC 559:1989).

2 General §2

©ISO/IEC ISO/IEC 9899:1999 (E)

3. Terms, definitions, and symbols
1 For the purposes of this International Standard, the following definitions apply. Other

terms are defined where they appear initalic type or on the left side of a syntax rule.
Terms explicitly defined in this International Standard are not to be presumed to refer
implicitly to similar terms defined elsewhere. Terms not defined in this International
Standard are to be interpreted according to ISO/IEC 2382−1. Mathematical symbols not
defined in this International Standard are to be interpreted according to ISO 31−11.

3.1
1 access

〈execution-time action〉 to read or modify the value of an object

2 NOTE 1 Where only one of these two actions is meant, ‘‘read’’ or ‘‘modify’’ is used.

3 NOTE 2 "Modify’’ includes the case where the new value being stored is the same as the previous value.

4 NOTE 3 Expressions that are not evaluated do not access objects.

3.2
1 alignment

requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address

3.3
1 argument

actual argument
actual parameter (deprecated)
expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded
by the parentheses in a function-like macro invocation

3.4
1 behavior

external appearance or action

3.4.1
1 implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made

2 EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

3.4.2
1 locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each
implementation documents

§3.4.2 General 3

ISO/IEC 9899:1999 (E) ©ISO/IEC

2 EXAMPLE An example of locale-specific behavior is whether theislower function returns true for
characters other than the 26 lowercase Latin letters.

3.4.3
1 undefined behavior

behavior, upon use of a nonportable or erroneous program construct or of erroneous data,
for which this International Standard imposes no requirements

2 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

3 EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.4.4
1 unspecified behavior

behavior where this International Standard provides two or more possibilities and
imposes no further requirements on which is chosen in any instance

2 EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

3.5
1 bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

2 NOTE It need not be possible to express the address of each individual bit of an object.

3.6
1 byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

2 NOTE 1 It is possible to express the address of each individual byte of an object uniquely.

3 NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called thelow-order bit; the most significant bit is called thehigh-order
bit.

3.7
1 character

〈abstract〉 member of a set of elements used for the organization, control, or
representation of data

3.7.1
1 character

single-byte character
〈C〉 bit representation that fits in a byte

4 General §3.7.1

©ISO/IEC ISO/IEC 9899:1999 (E)

3.7.2
1 multibyte character

sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment

2 NOTE The extended character set is a superset of the basic character set.

3.7.3
1 wide character

bit representation that fits in an object of typewchar_t , capable of representing any
character in the current locale

3.8
1 constraint

restriction, either syntactic or semantic, by which the exposition of language elements is
to be interpreted

3.9
1 correctly rounded result

representation in the result format that is nearest in value, subject to the effective
rounding mode, to what the result would be given unlimited range and precision

3.10
1 diagnostic message

message belonging to an implementation-defined subset of the implementation’s message
output

3.11
1 forward reference

reference to a later subclause of this International Standard that contains additional
information relevant to this subclause

3.12
1 implementation

particular set of software, running in a particular translation environment under particular
control options, that performs translation of programs for, and supports execution of
functions in, a particular execution environment

3.13
1 implementation limit

restriction imposed upon programs by the implementation

3.14
1 object

region of data storage in the execution environment, the contents of which can represent
values

§3.14 General 5

ISO/IEC 9899:1999 (E) ©ISO/IEC

2 NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1.

3.15
1 parameter

formal parameter
formal argument (deprecated)
object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition

3.16
1 recommended practice

specification that is strongly recommended as being in keeping with the intent of the
standard, but that may be impractical for some implementations

3.17
1 value

precise meaning of the contents of an object when interpreted as having a specific type

3.17.1
1 implementation-defined value

unspecified value where each implementation documents how the choice is made

3.17.2
1 indeterminate value

either an unspecified value or a trap representation

3.17.3
1 unspecified value

valid value of the relevant type where this International Standard imposes no
requirements on which value is chosen in any instance

2 NOTE An unspecified value cannot be a trap representation.

3.18
1 x

ceiling of x: the least integer greater than or equal tox

2 EXAMPLE 2. 4 is 3,−2. 4 is −2.

3.19
1 x

floor of x: the greatest integer less than or equal tox

2 EXAMPLE 2. 4 is 2,−2. 4 is −3.

6 General §3.19

©ISO/IEC ISO/IEC 9899:1999 (E)

4. Conformance
1 In this International Standard, ‘‘shall’’ is to be interpreted as a requirement on an

implementation or on a program; conversely, ‘‘shall not’’ is to be interpreted as a
prohibition.

2 If a ‘‘shall’’ or ‘‘shall not’’ requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International
Standard by the words ‘‘undefined behavior’’ or by the omission of any explicit definition
of behavior. There is no difference in emphasis among these three; they all describe
‘‘behavior that is undefined’’.

3 A program that is correct in all other aspects, operating on correct data, containing
unspecified behavior shall be a correct program and act in accordance with 5.1.2.3.

4 The implementation shall not successfully translate a preprocessing translation unit
containing a#error preprocessing directive unless it is part of a group skipped by
conditional inclusion.

5 A strictly conforming programshall use only those features of the language and library
specified in this International Standard.2) It shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and shall not exceed any
minimum implementation limit.

6 The two forms ofconforming implementationare hosted and freestanding. Aconforming
hosted implementationshall accept any strictly conforming program. Aconforming
freestanding implementationshall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause
(clause 7) is confined to the contents of the standard headers<float.h> ,
<iso646.h> , <limits.h> , <stdarg.h> , <stdbool.h> , <stddef.h> , and
<stdint.h> . A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming
program.3)

2) A strictly conforming program can use conditional features (such as those in annex F) provided the
use is guarded by a#ifdef directive with the appropriate macro. For example:

#ifdef _ _STDC_IEC_559_ _ /* FE_UPWARD defined */
/* ... */
fesetround(FE_UPWARD);
/* ... */

#endif

3) This implies that a conforming implementation reserves no identifiers other than those explicitly
reserved in this International Standard.

§4 General 7

ISO/IEC 9899:1999 (E) ©ISO/IEC

7 A conforming programis one that is acceptable to a conforming implementation.4)

8 An implementation shall be accompanied by a document that defines all implementation-
defined and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), error directive (6.10.5),
characteristics of floating types<float.h> (7.7), alternative spellings<iso646.h>
(7.9), sizes of integer types<limits.h> (7.10), variable arguments<stdarg.h>
(7.15), boolean type and values<stdbool.h> (7.16), common definitions
<stddef.h> (7.17), integer types<stdint.h> (7.18).

4) Strictly conforming programs are intended to be maximally portable among conforming
implementations. Conforming programs may depend upon nonportable features of a conforming
implementation.

8 General §4

©ISO/IEC ISO/IEC 9899:1999 (E)

5. Environment
1 An implementation translates C source files and executes C programs in two data-

processing-system environments, which will be called thetranslation environmentand
theexecution environmentin this International Standard. Their characteristics define and
constrain the results of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references
have been noted.

5.1 Conceptual models

5.1.1 Translation environment

5.1.1.1 Program structure

1 A C program need not all be translated at the same time. The text of the program is kept
in units calledsource files, (or preprocessing files) in this International Standard. A
source file together with all the headers and source files included via the preprocessing
directive#include is known as apreprocessing translation unit. After preprocessing, a
preprocessing translation unit is called atranslation unit. Previously translated translation
units may be preserved individually or in libraries. The separate translation units of a
program communicate by (for example) calls to functions whose identifiers have external
linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: linkages of identifiers (6.2.2), external definitions (6.9),
preprocessing directives (6.10).

5.1.1.2 Translation phases

1 The precedence among the syntax rules of translation is specified by the following
phases.5)

1. Physical source file multibyte characters are mapped, in an implementation-
defined manner, to the source character set (introducing new-line characters for
end-of-line indicators) if necessary. Trigraph sequences are replaced by
corresponding single-character internal representations.

2. Each instance of a backslash character (\) immediately followed by a new-line
character is deleted, splicing physical source lines to form logical source lines.
Only the last backslash on any physical source line shall be eligible for being part

5) Implementations shall behave as if these separate phases occur, even though many are typically folded
together in practice.

§5.1.1.2 Environment 9

ISO/IEC 9899:1999 (E) ©ISO/IEC

of such a splice. A source file that is not empty shall end in a new-line character,
which shall not be immediately preceded by a backslash character before any such
splicing takes place.

3. The source file is decomposed into preprocessing tokens6) and sequences of
white-space characters (including comments). A source file shall not end in a
partial preprocessing token or in a partial comment. Each comment is replaced by
one space character. New-line characters are retained. Whether each nonempty
sequence of white-space characters other than new-line is retained or replaced by
one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and
_Pragma unary operator expressions are executed. If a character sequence that
matches the syntax of a universal character name is produced by token
concatenation (6.10.3.3), the behavior is undefined. A#include preprocessing
directive causes the named header or source file to be processed from phase 1
through phase 4, recursively. All preprocessing directives are then deleted.

5. Each source character set member and escape sequence in character constants and
string literals is converted to the corresponding member of the execution character
set; if there is no corresponding member, it is converted to an implementation-
defined member other than the null (wide) character.7)

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each
preprocessing token is converted into a token. The resulting tokens are
syntactically and semantically analyzed and translated as a translation unit.

8. All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image
which contains information needed for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4),
preprocessing directives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

6) As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is
context-dependent. For example, see the handling of< within a#include preprocessing directive.

7) An implementation need not convert all non-corresponding source characters to the same execution
character.

10 Environment §5.1.1.2

©ISO/IEC ISO/IEC 9899:1999 (E)

5.1.1.3 Diagnostics

1 A conforming implementation shall produce at least one diagnostic message (identified in
an implementation-defined manner) if a preprocessing translation unit or translation unit
contains a violation of any syntax rule or constraint, even if the behavior is also explicitly
specified as undefined or implementation-defined. Diagnostic messages need not be
produced in other circumstances.8)

2 EXAMPLE An implementation shall issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this International Standard describes the behavior for a construct
as being both a constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.

5.1.2 Execution environments

1 Tw o execution environments are defined:freestandingand hosted. In both cases,
program startup occurs when a designated C function is called by the execution
environment. All objects with static storage duration shall beinitialized (set to their
initial values) before program startup. The manner and timing of such initialization are
otherwise unspecified. Program termination returns control to the execution
environment.

Forward references: storage durations of objects (6.2.4), initialization (6.7.8).

5.1.2.1 Freestanding environment

1 In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program
startup are implementation-defined. Any library facilities available to a freestanding
program, other than the minimal set required by clause 4, are implementation-defined.

2 The effect of program termination in a freestanding environment is implementation-
defined.

5.1.2.2 Hosted environment

1 A hosted environment need not be provided, but shall conform to the following
specifications if present.

8) The intent is that an implementation should identify the nature of, and where possible localize, each
violation. Of course, an implementation is free to produce any number of diagnostics as long as a
valid program is still correctly translated. It may also successfully translate an invalid program.

§5.1.2.2 Environment 11

ISO/IEC 9899:1999 (E) ©ISO/IEC

5.1.2.2.1 Program startup

1 The function called at program startup is namedmain . The implementation declares no
prototype for this function. It shall be defined with a return type ofint and with no
parameters:

int main(void) { /* ... */ }

or with two parameters (referred to here asargc andargv , though any names may be
used, as they are local to the function in which they are declared):

int main(int argc, char *argv[]) { /* ... */ }

or equivalent;9) or in some other implementation-defined manner.

2 If they are declared, the parameters to themain function shall obey the following
constraints:

— The value ofargc shall be nonnegative.

— argv[argc] shall be a null pointer.

— If the value ofargc is greater than zero, the array membersargv[0] through
argv[argc-1] inclusive shall contain pointers to strings, which are given
implementation-defined values by the host environment prior to program startup. The
intent is to supply to the program information determined prior to program startup
from elsewhere in the hosted environment. If the host environment is not capable of
supplying strings with letters in both uppercase and lowercase, the implementation
shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to byargv[0]
represents theprogram name; argv[0][0] shall be the null character if the
program name is not available from the host environment. If the value ofargc is
greater than one, the strings pointed to byargv[1] through argv[argc-1]
represent theprogram parameters.

— The parametersargc andargv and the strings pointed to by theargv array shall
be modifiable by the program, and retain their last-stored values between program
startup and program termination.

5.1.2.2.2 Program execution

1 In a hosted environment, a program may use all the functions, macros, type definitions,
and objects described in the library clause (clause 7).

9) Thus,int can be replaced by a typedef name defined asint , or the type ofargv can be written as
char ** argv , and so on.

12 Environment §5.1.2.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

5.1.2.2.3 Program termination

1 If the return type of themain function is a type compatible withint , a return from the
initial call to themain function is equivalent to calling theexit function with the value
returned by themain function as its argument;10) reaching the} that terminates the
main function returns a value of 0. If the return type is not compatible withint , the
termination status returned to the host environment is unspecified.

Forward references: definition of terms (7.1.1), theexit function (7.20.4.3).

5.1.2.3 Program execution

1 The semantic descriptions in this International Standard describe the behavior of an
abstract machine in which issues of optimization are irrelevant.

2 Accessing a volatile object, modifying an object, modifying a file, or calling a function
that does any of those operations are allside effects,11) which are changes in the state of
the execution environment. Evaluation of an expression may produce side effects. At
certain specified points in the execution sequence calledsequence points, all side effects
of previous evaluations shall be complete and no side effects of subsequent evaluations
shall have taken place. (A summary of the sequence points is given in annex C.)

3 In the abstract machine, all expressions are evaluated as specified by the semantics. An
actual implementation need not evaluate part of an expression if it can deduce that its
value is not used and that no needed side effects are produced (including any caused by
calling a function or accessing a volatile object).

4 When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be
modified between the previous sequence point and the next sequence point need not have
received their correct values yet.

5 The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous accesses are
complete and subsequent accesses have not yet occurred.

10) In accordance with 6.2.4, the lifetimes of objects with automatic storage duration declared inmain
will have ended in the former case, even where they would not have in the latter.

11) The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status
flags and control modes. Floating-point operations implicitly set the status flags; modes affect result
values of floating-point operations. Implementations that support such floating-point state are
required to regard changes to it as side effects — see annex F for details. The floating-point
environment library<fenv.h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

§5.1.2.3 Environment 13

ISO/IEC 9899:1999 (E) ©ISO/IEC

— At program termination, all data written into files shall be identical to the result that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in
7.19.3. The intent of these requirements is that unbuffered or line-buffered output
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

6 What constitutes an interactive device is implementation-defined.

7 More stringent correspondences between abstract and actual semantics may be defined by
each implementation.

8 EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point, the values of the actual objects would agree with those specified by the
abstract semantics. The keywordvolatile would then be redundant.

9 Alternatively, an implementation might perform various optimizations within each translation unit, such
that the actual semantics would agree with the abstract semantics only when making function calls across
translation unit boundaries. In such an implementation, at the time of each function entry and function
return where the calling function and the called function are in different translation units, the values of all
externally linked objects and of all objects accessible via pointers therein would agree with the abstract
semantics. Furthermore, at the time of each such function entry the values of the parameters of the called
function and of all objects accessible via pointers therein would agree with the abstract semantics. In this
type of implementation, objects referred to by interrupt service routines activated by thesignal function
would require explicit specification ofvolatile storage, as well as other implementation-defined
restrictions.

10 EXAMPLE 2 In executing the fragment

char c1, c2;
/* ... */
c1 = c1 + c2;

the ‘‘integer promotions’’ require that the abstract machine promote the value of each variable toint size
and then add the twoint s and truncate the sum. Provided the addition of twochar s can be done without
overflow, or with overflow wrapping silently to produce the correct result, the actual execution need only
produce the same result, possibly omitting the promotions.

11 EXAMPLE 3 Similarly, in the fragment

float f1, f2;
double d;
/* ... */
f1 = f2 * d;

the multiplication may be executed using single-precision arithmetic if the implementation can ascertain
that the result would be the same as if it were executed using double-precision arithmetic (for example, ifd
were replaced by the constant2.0 , which has typedouble).

14 Environment §5.1.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

12 EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate
semantics. Values are independent of whether they are represented in a register or in memory. For
example, an implicitspilling of a register is not permitted to alter the value. Also, an explicitstore and load
is required to round to the precision of the storage type. In particular, casts and assignments are required to
perform their specified conversion. For the fragment

double d1, d2;
float f;
d1 = f = expression;
d2 = (float) expressions;

the values assigned tod1 andd2 are required to have been converted tofloat .

13 EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in
precision as well as range. The implementation cannot generally apply the mathematical associative rules
for addition or multiplication, nor the distributive rule, because of roundoff error, even in the absence of
overflow and underflow. Likewise, implementations cannot generally replace decimal constants in order to
rearrange expressions. In the following fragment, rearrangements suggested by mathematical rules for real
numbers are often not valid (see F.8).

double x, y, z;
/* ... */
x = (x * y) * z; // not equivalent tox *= y * z;
z = (x - y) + y ; // not equivalent toz = x;
z = x + x * y; // not equivalent toz = x * (1.0 + y);
y = x / 5.0; // not equivalent toy = x * 0.2;

14 EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/* ... */
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum(a + 32760) is
next added tob, and that result is then added to5 which results in the value assigned toa. On a machine in
which overflows produce an explicit trap and in which the range of values representable by anint is
[−32768, +32767], the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values fora andb were, respectively, −32754 and −15, the suma + b would produce a trap
while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);
or

a = (a + (b + 32765));

since the values fora andb might have been, respectively, 4 and −8 or −17 and 12. However, on a machine
in which overflow silently generates some value and where positive and negative overflows cancel, the
above expression statement can be rewritten by the implementation in any of the above ways because the
same result will occur.

§5.1.2.3 Environment 15

ISO/IEC 9899:1999 (E) ©ISO/IEC

15 EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the
following fragment

#include <stdio.h>
int sum;
char *p;
/* ... */
sum = sum * 10 - '0' + (*p++ = getchar());

the expression statement is grouped as if it were written as

sum = (((sum * 10) - '0') + ((*(p++)) = (getchar())));

but the actual increment ofp can occur at any time between the previous sequence point and the next
sequence point (the;), and the call togetchar can occur at any point prior to the need of its returned
value.

Forward references: expressions (6.5), type qualifiers (6.7.3), statements (6.8), the
signal function (7.14), files (7.19.3).

16 Environment §5.1.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

5.2 Environmental considerations

5.2.1 Character sets

1 Tw o sets of characters and their associated collating sequences shall be defined: the set in
which source files are written (thesource character set), and the set interpreted in the
execution environment (theexecution character set). Each set is further divided into a
basic character set, whose contents are given by this subclause, and a set of zero or more
locale-specific members (which are not members of the basic character set) called
extended characters. The combined set is also called theextended character set. The
values of the members of the execution character set are implementation-defined.

2 In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set or byescape
sequencesconsisting of the backslash\ followed by one or more characters. A byte with
all bits set to 0, called thenull character, shall exist in the basic execution character set; it
is used to terminate a character string.

3 Both the basic source and basic execution character sets shall have the following
members: the 26uppercase lettersof the Latin alphabet

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

the 26lowercase lettersof the Latin alphabet

a b c d e f g h i j k l m
n o p q r s t u v w x y z

the 10 decimaldigits

0 1 2 3 4 5 6 7 8 9

the following 29 graphic characters

! " # % & ' () * + , - . / :
; < = > ? [\] ˆ _ { | } ˜

the space character, and control characters representing horizontal tab, vertical tab, and
form feed. The representation of each member of the source and execution basic
character sets shall fit in a byte. In both the source and execution basic character sets, the
value of each character after0 in the above list of decimal digits shall be one greater than
the value of the previous. In source files, there shall be some way of indicating the end of
each line of text; this International Standard treats such an end-of-line indicator as if it
were a single new-line character. In the basic execution character set, there shall be
control characters representing alert, backspace, carriage return, and new line. If any
other characters are encountered in a source file (except in an identifier, a character
constant, a string literal, a header name, a comment, or a preprocessing token that is never

§5.2.1 Environment 17

ISO/IEC 9899:1999 (E) ©ISO/IEC

converted to a token), the behavior is undefined.

4 A letter is an uppercase letter or a lowercase letter as defined above; in this International
Standard the term does not include other characters that are letters in other alphabets.

5 The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4),
preprocessing directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Trigraph sequences

1 All occurrences in a source file of the following sequences of three characters (called
trigraph sequences12)) are replaced with the corresponding single character.

??= #
??([
??/ \

??)]
??' ˆ
??< {

??! |
??> }
??- ˜

No other trigraph sequences exist. Each? that does not begin one of the trigraphs listed
above isnot changed.

2 EXAMPLE The following source line

printf("Eh???/n");

becomes (after replacement of the trigraph sequence??/)

printf("Eh?\n");

5.2.1.2 Multibyte characters

1 The source character set may contain multibyte characters, used to represent members of
the extended character set. The execution character set may also contain multibyte
characters, which need not have the same encoding as for the source character set. For
both character sets, the following shall hold:

— The basic character set shall be present and each character shall be encoded as a
single byte.

— The presence, meaning, and representation of any additional members is locale-
specific.

— A multibyte character set may have astate-dependent encoding, wherein each
sequence of multibyte characters begins in aninitial shift state and enters other
locale-specificshift stateswhen specific multibyte characters are encountered in the
sequence. While in the initial shift state, all single-byte characters retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes

12) The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as
described in ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

18 Environment §5.2.1.2

©ISO/IEC ISO/IEC 9899:1999 (E)

in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift
state.

— A byte with all bits zero shall not occur in the second or subsequent bytes of a
multibyte character.

2 For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin
and end in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist
of a sequence of valid multibyte characters.

5.2.2 Character display semantics

1 Theactive positionis that location on a display device where the next character output by
the fputc function would appear. The intent of writing a printing character (as defined
by the isprint function) to a display device is to display a graphic representation of
that character at the active position and then advance the active position to the next
position on the current line. The direction of writing is locale-specific. If the active
position is at the final position of a line (if there is one), the behavior of the display device
is unspecified.

2 Alphabetic escape sequences representing nongraphic characters in the execution
character set are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert without changing the active position.

\b (backspace) Moves the active position to the previous position on the current line. If
the active position is at the initial position of a line, the behavior of the display
device is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next
logical page.

\n (new line) Moves the active position to the initial position of the next line.

\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position
on the current line. If the active position is at or past the last defined horizontal
tabulation position, the behavior of the display device is unspecified.

\v (vertical tab) Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical
tabulation position, the behavior of the display device is unspecified.

§5.2.2 Environment 19

ISO/IEC 9899:1999 (E) ©ISO/IEC

3 Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a singlechar object. The external representations in a text file
need not be identical to the internal representations, and are outside the scope of this
International Standard.

Forward references: the isprint function (7.4.1.8), thefputc function (7.19.7.3).

5.2.3 Signals and interrupts

1 Functions shall be implemented such that they may be interrupted at any time by a signal,
or may be called by a signal handler, or both, with no alteration to earlier, but still active,
invocations’ control flow (after the interruption), function return values, or objects with
automatic storage duration. All such objects shall be maintained outside thefunction
image (the instructions that compose the executable representation of a function) on a
per-invocation basis.

5.2.4 Environmental limits

1 Both the translation and execution environments constrain the implementation of
language translators and libraries. The following summarizes the language-related
environmental limits on a conforming implementation; the library-related limits are
discussed in clause 7.

5.2.4.1 Translation limits

1 The implementation shall be able to translate and execute at least one program that
contains at least one instance of every one of the following limits:13)

— 127 nesting levels of blocks

— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an
arithmetic, structure, union, or incomplete type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator

— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name (each
universal character name or extended source character is considered a single
character)

— 31 significant initial characters in an external identifier (each universal character name
specifying a short identifier of 0000FFFF or less is considered 6 characters, each
universal character name specifying a short identifier of 00010000 or more is
considered 10 characters, and each extended source character is considered the same

13) Implementations should avoid imposing fixed translation limits whenever possible.

20 Environment §5.2.4.1

©ISO/IEC ISO/IEC 9899:1999 (E)

number of characters as the corresponding universal character name, if any)14)

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit

— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a character string literal or wide string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for#include d files

— 1023case labels for aswitch statement (excluding those for any nestedswitch
statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 lev els of nested structure or union definitions in a single struct-declaration-list

5.2.4.2 Numerical limits

1 An implementation is required to document all the limits specified in this subclause,
which are specified in the headers<limits.h> and<float.h> . Additional limits are
specified in<stdint.h> .

Forward references: integer types<stdint.h> (7.18).

5.2.4.2.1 Sizes of integer types<limits.h>

1 The values given below shall be replaced by constant expressions suitable for use in#if
preprocessing directives. Moreover, except forCHAR_BIT and MB_LEN_MAX, the
following shall be replaced by expressions that have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Their implementation-defined values shall be equal or greater in magnitude
(absolute value) to those shown, with the same sign.

14) See ‘‘future language directions’’ (6.11.3).

§5.2.4.2.1 Environment 21

ISO/IEC 9899:1999 (E) ©ISO/IEC

— number of bits for smallest object that is not a bit-field (byte)
CHAR_BIT 8

— minimum value for an object of typesigned char
SCHAR_MIN -127 // −(27 − 1)

— maximum value for an object of typesigned char
SCHAR_MAX +127 // 27 − 1

— maximum value for an object of typeunsigned char
UCHAR_MAX 255 // 28 − 1

— minimum value for an object of typechar
CHAR_MIN see below

— maximum value for an object of typechar
CHAR_MAX see below

— maximum number of bytes in a multibyte character, for any supported locale
MB_LEN_MAX 1

— minimum value for an object of typeshort int
SHRT_MIN -32767 // −(215 − 1)

— maximum value for an object of typeshort int
SHRT_MAX +32767 // 215 − 1

— maximum value for an object of typeunsigned short int
USHRT_MAX 65535 // 216 − 1

— minimum value for an object of typeint
INT_MIN -32767 // −(215 − 1)

— maximum value for an object of typeint
INT_MAX +32767 // 215 − 1

— maximum value for an object of typeunsigned int
UINT_MAX 65535 // 216 − 1

— minimum value for an object of typelong int
LONG_MIN -2147483647 // −(231 − 1)

— maximum value for an object of typelong int
LONG_MAX +2147483647 // 231 − 1

— maximum value for an object of typeunsigned long int
ULONG_MAX 4294967295 // 232 − 1

— minimum value for an object of typelong long int
LLONG_MIN -9223372036854775807 // −(263 − 1)

22 Environment §5.2.4.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

— maximum value for an object of typelong long int
LLONG_MAX +9223372036854775807 // 263 − 1

— maximum value for an object of typeunsigned long long int
ULLONG_MAX 18446744073709551615 // 264 − 1

2 If the value of an object of typechar is treated as a signed integer when used in an
expression, the value ofCHAR_MINshall be the same as that ofSCHAR_MINand the
value ofCHAR_MAXshall be the same as that ofSCHAR_MAX. Otherwise, the value of
CHAR_MINshall be 0 and the value ofCHAR_MAXshall be the same as that of
UCHAR_MAX.15) The valueUCHAR_MAXshall equal 2CHAR_BIT − 1.

Forward references: representations of types (6.2.6), conditional inclusion (6.10.1).

5.2.4.2.2 Characteristics of floating types<float.h>

1 The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic.16) The following parameters are used to
define the model for each floating-point type:

s sign (±1)
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimumemin and a maximumemax)
p precision (the number of base-b digits in the significand)
fk nonnegative integers less thanb (the significand digits)

2 A floating-point number(x) is defined by the following model:

x = sbe
p

k=1
Σ fkb−k, emin ≤ e ≤ emax

3 In addition to normalized floating-point numbers (f1 > 0 if x ≠ 0), floating types may be
able to contain other kinds of floating-point numbers, such as subnormal floating-point
numbers (x ≠ 0, e = emin, f1 = 0) and unnormalized floating-point numbers (x ≠ 0,
e > emin, f1 = 0), and values that are not floating-point numbers, such as infinities and
NaNs. A NaN is an encoding signifying Not-a-Number. Aquiet NaN propagates
through almost every arithmetic operation without raising a floating-point exception; a
signaling NaN generally raises a floating-point exception when occurring as an

15) See 6.2.5.

16) The floating-point model is intended to clarify the description of each floating-point characteristic and
does not require the floating-point arithmetic of the implementation to be identical.

§5.2.4.2.2 Environment 23

ISO/IEC 9899:1999 (E) ©ISO/IEC

arithmetic operand.17)

4 The accuracy of the floating-point operations (+, - , * , /) and of the library functions in
<math.h> and <complex.h> that return floating-point results is implementation-
defined. The implementation may state that the accuracy is unknown.

5 All integer values in the<float.h> header, exceptFLT_ROUNDS, shall be constant
expressions suitable for use in#if preprocessing directives; all floating values shall be
constant expressions. All exceptDECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX,
andFLT_ROUNDShave separate names for all three floating-point types. The floating-
point model representation is provided for all values exceptFLT_EVAL_METHODand
FLT_ROUNDS.

6 The rounding mode for floating-point addition is characterized by the implementation-
defined value ofFLT_ROUNDS:18)

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDScharacterize implementation-defined rounding
behavior.

7 The values of operations with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision
may be greater than required by the type. The use of evaluation formats is characterized
by the implementation-defined value ofFLT_EVAL_METHOD:19)

-1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the
type;

17) IEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support
IEC 60559:1989, the terms quiet NaN and signaling NaN are intended to apply to encodings with
similar behavior.

18) Evaluation ofFLT_ROUNDScorrectly reflects any execution-time change of rounding mode through
the functionfesetround in <fenv.h> .

19) The evaluation method determines evaluation formats of expressions involving all floating types, not
just real types. For example, ifFLT_EVAL_METHODis 1, then the product of twofloat
_Complex operands is represented in thedouble _Complex format, and its parts are evaluated to
double .

24 Environment §5.2.4.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

1 evaluate operations and constants of typefloat and double to the
range and precision of thedouble type, evaluatelong double
operations and constants to the range and precision of thelong double
type;

2 evaluate all operations and constants to the range and precision of the
long double type.

All other negative values forFLT_EVAL_METHODcharacterize implementation-defined
behavior.

8 The values given in the following list shall be replaced by constant expressions with
implementation-defined values that are greater or equal in magnitude (absolute value) to
those shown, with the same sign:

— radix of exponent representation,b
FLT_RADIX 2

— number of base-FLT_RADIX digits in the floating-point significand,p

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

— number of decimal digits,n, such that any floating-point number in the widest
supported floating type withpmax radix b digits can be rounded to a floating-point
number withn decimal digits and back again without change to the value,





pmax log10 b

1 + pmax log10 b
if b is a power of 10

otherwise

DECIMAL_DIG 10

— number of decimal digits,q, such that any floating-point number withq decimal digits
can be rounded into a floating-point number withp radix b digits and back again
without change to theq decimal digits,





p log10 b

(p − 1) log10 b
if b is a power of 10

otherwise

FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

§5.2.4.2.2 Environment 25

ISO/IEC 9899:1999 (E) ©ISO/IEC

— minimum negative integer such thatFLT_RADIX raised to one less than that power is
a normalized floating-point number,emin

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of

normalized floating-point numbers,

log10 bemin−1


FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such thatFLT_RADIX raised to one less than that power is a
representable finite floating-point number,emax

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable
finite floating-point numbers,log10((1 − b−p)bemax)
FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

9 The values given in the following list shall be replaced by constant expressions with
implementation-defined values that are greater than or equal to those shown:

— maximum representable finite floating-point number, (1− b−p)bemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

10 The values given in the following list shall be replaced by constant expressions with
implementation-defined (positive) values that are less than or equal to those shown:

— the difference between 1 and the least value greater than 1 that is representable in the
given floating point type,b1−p

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

26 Environment §5.2.4.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

— minimum normalized positive floating-point number,bemin−1

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

Recommended practice

11 Conversion from (at least)double to decimal withDECIMAL_DIG digits and back
should be the identity function.

12 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum
requirements of this International Standard, and the appropriate values in a<float.h> header for type
float :

x = s16e
6

k=1
Σ fk16−k, −31 ≤ e ≤ +32

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

13 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for
single-precision and double-precision normalized numbers in IEC 60559,20) and the appropriate values in a
<float.h> header for typesfloat anddouble :

x f = s2e
24

k=1
Σ fk2

−k, −125≤ e ≤ +128

xd = s2e
53

k=1
Σ fk2

−k, −1021≤ e ≤ +1024

FLT_RADIX 2
DECIMAL_DIG 17
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant

20) The floating-point model in that standard sums powers ofb from zero, so the values of the exponent
limits are one less than shown here.

§5.2.4.2.2 Environment 27

ISO/IEC 9899:1999 (E) ©ISO/IEC

FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX 0X1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53
DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant
DBL_DIG 15
DBL_MIN_EXP -1021
DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_MIN_10_EXP -307
DBL_MAX_EXP +1024
DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX 0X1.fffffffffffffP1023 // hex constant
DBL_MAX_10_EXP +308

If a type wider thandouble were supported, thenDECIMAL_DIG would be greater than 17. For
example, if the widest type were to use the minimal-width IEC 60559 double-extended format (64 bits of
precision), thenDECIMAL_DIGwould be 21.

Forward references: conditional inclusion (6.10.1), complex arithmetic
<complex.h> (7.3), floating-point environment<fenv.h> (7.6), mathematics
<math.h> (7.12).

28 Environment §5.2.4.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6. Language
6.1 Notation

1 In the syntax notation used in this clause, syntactic categories (nonterminals) are
indicated byitalic type, and literal words and character set members (terminals) bybold
type . A colon (:) following a nonterminal introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words ‘‘one of’’. An
optional symbol is indicated by the subscript ‘‘opt’’, so that

{ expressionopt }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not italicized and
words are separated by spaces instead of hyphens.

3 A summary of the language syntax is given in annex A.

6.2 Concepts

6.2.1 Scopes of identifiers

1 An identifier can denote an object; a function; a tag or a member of a structure, union, or
enumeration; a typedef name; a label name; a macro name; or a macro parameter. The
same identifier can denote different entities at different points in the program. A member
of an enumeration is called anenumeration constant. Macro names and macro
parameters are not considered further here, because prior to the semantic phase of
program translation any occurrences of macro names in the source file are replaced by the
preprocessing token sequences that constitute their macro definitions.

2 For each different entity that an identifier designates, the identifier isvisible (i.e., can be
used) only within a region of program text called itsscope. Different entities designated
by the same identifier either have different scopes, or are in different name spaces. There
are four kinds of scopes: function, file, block, and function prototype. (Afunction
prototypeis a declaration of a function that declares the types of its parameters.)

3 A label name is the only kind of identifier that hasfunction scope. It can be used (in a
goto statement) anywhere in the function in which it appears, and is declared implicitly
by its syntactic appearance (followed by a: and a statement).

4 Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the identifier
appears outside of any block or list of parameters, the identifier hasfile scope, which
terminates at the end of the translation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter declarations in
a function definition, the identifier hasblock scope, which terminates at the end of the
associated block. If the declarator or type specifier that declares the identifier appears

§6.2.1 Language 29

ISO/IEC 9899:1999 (E) ©ISO/IEC

within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier hasfunction prototype scope, which terminates at the end of the
function declarator. If an identifier designates two different entities in the same name
space, the scopes might overlap. If so, the scope of one entity (theinner scope) will be a
strict subset of the scope of the other entity (theouter scope). Within the inner scope, the
identifier designates the entity declared in the inner scope; the entity declared in the outer
scope ishidden(and not visible) within the inner scope.

5 Unless explicitly stated otherwise, where this International Standard uses the term
identifier to refer to some entity (as opposed to the syntactic construct), it refers to the
entity in the relevant name space whose declaration is visible at the point the identifier
occurs.

6 Tw o identifiers have thesame scopeif and only if their scopes terminate at the same
point.

7 Structure, union, and enumeration tags have scope that begins just after the appearance of
the tag in a type specifier that declares the tag. Each enumeration constant has scope that
begins just after the appearance of its defining enumerator in an enumerator list. Any
other identifier has scope that begins just after the completion of its declarator.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions
(6.9.1), identifiers (6.4.2), name spaces of identifiers (6.2.3), macro replacement (6.10.3),
source file inclusion (6.10.2), statements (6.8).

6.2.2 Linkages of identifiers

1 An identifier declared in different scopes or in the same scope more than once can be
made to refer to the same object or function by a process calledlinkage.21) There are
three kinds of linkage: external, internal, and none.

2 In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier withexternal linkagedenotes the same object or
function. Within one translation unit, each declaration of an identifier withinternal
linkage denotes the same object or function. Each declaration of an identifier withno
linkagedenotes a unique entity.

3 If the declaration of a file scope identifier for an object or a function contains the storage-
class specifierstatic , the identifier has internal linkage.22)

4 For an identifier declared with the storage-class specifierextern in a scope in which a

21) There is no linkage between different identifiers.

22) A function declaration can contain the storage-class specifierstatic only if it is at file scope; see
6.7.1.

30 Language §6.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

prior declaration of that identifier is visible,23) if the prior declaration specifies internal or
external linkage, the linkage of the identifier at the later declaration is the same as the
linkage specified at the prior declaration. If no prior declaration is visible, or if the prior
declaration specifies no linkage, then the identifier has external linkage.

5 If the declaration of an identifier for a function has no storage-class specifier, its linkage
is determined exactly as if it were declared with the storage-class specifierextern . If
the declaration of an identifier for an object has file scope and no storage-class specifier,
its linkage is external.

6 The following identifiers have no linkage: an identifier declared to be anything other than
an object or a function; an identifier declared to be a function parameter; a block scope
identifier for an object declared without the storage-class specifierextern .

7 If, within a translation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9),
statements (6.8).

6.2.3 Name spaces of identifiers

1 If more than one declaration of a particular identifier is visible at any point in a
translation unit, the syntactic context disambiguates uses that refer to different entities.
Thus, there are separatename spacesfor various categories of identifiers, as follows:

— label names(disambiguated by the syntax of the label declaration and use);

— the tagsof structures, unions, and enumerations (disambiguated by following any24)

of the keywordsstruct , union , or enum);

— the membersof structures or unions; each structure or union has a separate name
space for its members (disambiguated by the type of the expression used to access the
member via the. or -> operator);

— all other identifiers, calledordinary identifiers(declared in ordinary declarators or as
enumeration constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1),
structure and union specifiers (6.7.2.1), structure and union members (6.5.2.3), tags
(6.7.2.3), thegoto statement (6.8.6.1).

23) As specified in 6.2.1, the later declaration might hide the prior declaration.

24) There is only one name space for tags even though three are possible.

§6.2.3 Language 31

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.2.4 Storage durations of objects

1 An object has astorage durationthat determines its lifetime. There are three storage
durations: static, automatic, and allocated. Allocated storage is described in 7.20.3.

2 The lifetime of an object is the portion of program execution during which storage is
guaranteed to be reserved for it. An object exists, has a constant address,25) and retains
its last-stored value throughout its lifetime.26) If an object is referred to outside of its
lifetime, the behavior is undefined. The value of a pointer becomes indeterminate when
the object it points to reaches the end of its lifetime.

3 An object whose identifier is declared with external or internal linkage, or with the
storage-class specifierstatic has static storage duration. Its lifetime is the entire
execution of the program and its stored value is initialized only once, prior to program
startup.

4 An object whose identifier is declared with no linkage and without the storage-class
specifierstatic hasautomatic storage duration.

5 For such an object that does not have a variable length array type, its lifetime extends
from entry into the block with which it is associated until execution of that block ends in
any way. (Entering an enclosed block or calling a function suspends, but does not end,
execution of the current block.) If the block is entered recursively, a new instance of the
object is created each time. The initial value of the object is indeterminate. If an
initialization is specified for the object, it is performed each time the declaration is
reached in the execution of the block; otherwise, the value becomes indeterminate each
time the declaration is reached.

6 For such an object that does have a variable length array type, its lifetime extends from
the declaration of the object until execution of the program leaves the scope of the
declaration.27) If the scope is entered recursively, a new instance of the object is created
each time. The initial value of the object is indeterminate.

Forward references: statements (6.8), function calls (6.5.2.2), declarators (6.7.5), array
declarators (6.7.5.2), initialization (6.7.8).

25) The term ‘‘constant address’’ means that two pointers to the object constructed at possibly different
times will compare equal. The address may be different during two different executions of the same
program.

26) In the case of a volatile object, the last store need not be explicit in the program.

27) Leaving the innermost block containing the declaration, or jumping to a point in that block or an
embedded block prior to the declaration, leaves the scope of the declaration.

32 Language §6.2.4

©ISO/IEC ISO/IEC 9899:1999 (E)

6.2.5 Types

1 The meaning of a value stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the
simplest such expression; the type is specified in the declaration of the identifier.) Types
are partitioned intoobject types(types that fully describe objects),function types(types
that describe functions), andincomplete types(types that describe objects but lack
information needed to determine their sizes).

2 An object declared as type_Bool is large enough to store the values 0 and 1.

3 An object declared as typechar is large enough to store any member of the basic
execution character set. If a member of the basic execution character set is stored in a
char object, its value is guaranteed to be positive. If any other character is stored in a
char object, the resulting value is implementation-defined but shall be within the range
of values that can be represented in that type.

4 There are fivestandard signed integer types, designated assigned char , short
int , int , long int , and long long int . (These and other types may be
designated in several additional ways, as described in 6.7.2.) There may also be
implementation-definedextended signed integer types.28) The standard and extended
signed integer types are collectively calledsigned integer types.29)

5 An object declared as typesigned char occupies the same amount of storage as a
‘‘plain’’ char object. A ‘‘plain’’ int object has the natural size suggested by the
architecture of the execution environment (large enough to contain any value in the range
INT_MIN to INT_MAXas defined in the header<limits.h>).

6 For each of the signed integer types, there is a corresponding (but different) unsigned
integer type (designated with the keywordunsigned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The type
_Bool and the unsigned integer types that correspond to the standard signed integer
types are thestandard unsigned integer types. The unsigned integer types that
correspond to the extended signed integer types are theextended unsigned integer types.
The standard and extended unsigned integer types are collectively calledunsigned integer
types.30)

28) Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

29) Therefore, any statement in this Standard about signed integer types also applies to the extended
signed integer types.

30) Therefore, any statement in this Standard about unsigned integer types also applies to the extended
unsigned integer types.

§6.2.5 Language 33

ISO/IEC 9899:1999 (E) ©ISO/IEC

7 The standard signed integer types and standard unsigned integer types are collectively
called the standard integer types, the extended signed integer types and extended
unsigned integer types are collectively called theextended integer types.

8 For any two integer types with the same signedness and different integer conversion rank
(see 6.3.1.1), the range of values of the type with smaller integer conversion rank is a
subrange of the values of the other type.

9 The range of nonnegative values of a signed integer type is a subrange of the
corresponding unsigned integer type, and the representation of the same value in each
type is the same.31) A computation involving unsigned operands can never overflow,
because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than the largest value that can be
represented by the resulting type.

10 There are threereal floating types, designated asfloat , double , and long
double .32) The set of values of the typefloat is a subset of the set of values of the
typedouble ; the set of values of the typedouble is a subset of the set of values of the
type long double .

11 There are threecomplex types, designated asfloat _Complex , double
_Complex , and long double _Complex .33) The real floating and complex types
are collectively called thefloating types.

12 For each floating type there is acorresponding real type, which is always a real floating
type. For real floating types, it is the same type. For complex types, it is the type given
by deleting the keyword_Complex from the type name.

13 Each complex type has the same representation and alignment requirements as an array
type containing exactly two elements of the corresponding real type; the first element is
equal to the real part, and the second element to the imaginary part, of the complex
number.

14 The typechar , the signed and unsigned integer types, and the floating types are
collectively called thebasic types. Even if the implementation defines two or more basic
types to have the same representation, they are nevertheless different types.34)

31) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

32) See ‘‘future language directions’’ (6.11.1).

33) A specification for imaginary types is in informative annex G.

34) An implementation may define new keywords that provide alternative ways to designate a basic (or
any other) type; this does not violate the requirement that all basic types be different.
Implementation-defined keywords shall have the form of an identifier reserved for any use as
described in 7.1.3.

34 Language §6.2.5

©ISO/IEC ISO/IEC 9899:1999 (E)

15 The three typeschar , signed char , andunsigned char are collectively called
the character types. The implementation shall definechar to have the same range,
representation, and behavior as eithersigned char or unsigned char .35)

16 An enumerationcomprises a set of named integer constant values. Each distinct
enumeration constitutes a differentenumerated type.

17 The typechar , the signed and unsigned integer types, and the enumerated types are
collectively calledinteger types. The integer and real floating types are collectively called
real types.

18 Integer and floating types are collectively calledarithmetic types. Each arithmetic type
belongs to onetype domain: the real type domaincomprises the real types, thecomplex
type domaincomprises the complex types.

19 Thevoid type comprises an empty set of values; it is an incomplete type that cannot be
completed.

20 Any number of derived typescan be constructed from the object, function, and
incomplete types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a
particular member object type, called theelement type.36) Array types are
characterized by their element type and by the number of elements in the array. An
array type is said to be derived from its element type, and if its element type isT, the
array type is sometimes called ‘‘array ofT ’’. The construction of an array type from
an element type is called ‘‘array type derivation’’.

— A structure typedescribes a sequentially allocated nonempty set of member objects
(and, in certain circumstances, an incomplete array), each of which has an optionally
specified name and possibly distinct type.

— A union typedescribes an overlapping nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

— A function typedescribes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A
function type is said to be derived from its return type, and if its return type isT, the
function type is sometimes called ‘‘function returningT ’’. The construction of a
function type from a return type is called ‘‘function type derivation’’.

35) CHAR_MIN, defined in<limits.h> , will have one of the values 0 orSCHAR_MIN, and this can be
used to distinguish the two options. Irrespective of the choice made,char is a separate type from the
other two and is not compatible with either.

36) Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

§6.2.5 Language 35

ISO/IEC 9899:1999 (E) ©ISO/IEC

— A pointer typemay be derived from a function type, an object type, or an incomplete
type, called thereferenced type. A pointer type describes an object whose value
provides a reference to an entity of the referenced type. A pointer type derived from
the referenced typeT is sometimes called ‘‘pointer toT ’’. The construction of a
pointer type from a referenced type is called ‘‘pointer type derivation’’.

These methods of constructing derived types can be applied recursively.

21 Arithmetic types and pointer types are collectively calledscalar types. Array and
structure types are collectively calledaggregate types.37)

22 An array type of unknown size is an incomplete type. It is completed, for an identifier of
that type, by specifying the size in a later declaration (with internal or external linkage).
A structure or union type of unknown content (as described in 6.7.2.3) is an incomplete
type. It is completed, for all declarations of that type, by declaring the same structure or
union tag with its defining content later in the same scope.

23 Array, function, and pointer types are collectively calledderived declarator types. A
declarator type derivationfrom a typeT is the construction of a derived declarator type
from T by the application of an array-type, a function-type, or a pointer-type derivation to
T.

24 A type is characterized by itstype category, which is either the outermost derivation of a
derived type (as noted above inthe construction of derived types), or the type itself if the
type consists of no derived types.

25 Any type so far mentioned is anunqualified type. Each unqualified type has several
qualified versionsof its type,38) corresponding to the combinations of one, two, or all
three of theconst , volatile , andrestrict qualifiers. The qualified or unqualified
versions of a type are distinct types that belong to the same type category and have the
same representation and alignment requirements.39) A derived type is not qualified by the
qualifiers (if any) of the type from which it is derived.

26 A pointer tovoid shall have the same representation and alignment requirements as a
pointer to a character type.39) Similarly, pointers to qualified or unqualified versions of
compatible types shall have the same representation and alignment requirements. All
pointers to structure types shall have the same representation and alignment requirements
as each other. All pointers to union types shall have the same representation and
alignment requirements as each other. Pointers to other types need not have the same

37) Note that aggregate type does not include union type because an object with union type can only
contain one member at a time.

38) See 6.7.3 regarding qualified array and function types.

39) The same representation and alignment requirements are meant to imply interchangeability as
arguments to functions, return values from functions, and members of unions.

36 Language §6.2.5

©ISO/IEC ISO/IEC 9899:1999 (E)

representation or alignment requirements.

27 EXAMPLE 1 The type designated as ‘‘float * ’’ has type ‘‘pointer tofloat ’’. Its type category is
pointer, not a floating type. The const-qualified version of this type is designated as ‘‘float * const ’’
whereas the type designated as ‘‘const float * ’’ is not a qualified type — its type is ‘‘pointer to const-
qualifiedfloat ’’ and is a pointer to a qualified type.

28 EXAMPLE 2 The type designated as ‘‘struct tag (*[5])(float) ’’ has type ‘‘array of pointer to
function returningstruct tag ’’. The array has length five and the function has a single parameter of type
float . Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types

6.2.6.1 General

1 The representations of all types are unspecified except as stated in this subclause.

2 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes,
the number, order, and encoding of which are either explicitly specified or
implementation-defined.

3 Values stored in unsigned bit-fields and objects of typeunsigned char shall be
represented using a pure binary notation.40)

4 Values stored in non-bit-field objects of any other object type consist ofn × CHAR_BIT
bits, wheren is the size of an object of that type, in bytes. The value may be copied into
an object of typeunsigned char [n] (e.g., bymemcpy); the resulting set of bytes is
called theobject representationof the value. Values stored in bit-fields consist ofm bits,
wherem is the size specified for the bit-field. The object representation is the set ofm
bits the bit-field comprises in the addressable storage unit holding it. Tw o values (other
than NaNs) with the same object representation compare equal, but values that compare
equal may have different object representations.

5 Certain object representations need not represent a value of the object type. If the stored
value of an object has such a representation and is read by an lvalue expression that does
not have character type, the behavior is undefined. If such a representation is produced
by a side effect that modifies all or any part of the object by an lvalue expression that
does not have character type, the behavior is undefined.41) Such a representation is called
a trap representation.

40) A positional representation for integers that uses the binary digits 0 and 1, in which the values
represented by successive bits are additive, begin with 1, and are multiplied by successive integral
powers of 2, except perhaps the bit with the highest position. (Adapted from theAmerican National
Dictionary for Information Processing Systems.) A byte containsCHAR_BIT bits, and the values of
typeunsigned char range from 0 to2CHAR_BIT − 1.

41) Thus, an automatic variable can be initialized to a trap representation without causing undefined
behavior, but the value of the variable cannot be used until a proper value is stored in it.

§6.2.6.1 Language 37

ISO/IEC 9899:1999 (E) ©ISO/IEC

6 When a value is stored in an object of structure or union type, including in a member
object, the bytes of the object representation that correspond to any padding bytes take
unspecified values.42) The values of padding bytes shall not affect whether the value of
such an object is a trap representation. Those bits of a structure or union object that are
in the same byte as a bit-field member, but are not part of that member, shall similarly not
affect whether the value of such an object is a trap representation.

7 When a value is stored in a member of an object of union type, the bytes of the object
representation that do not correspond to that member but do correspond to other members
take unspecified values, but the value of the union object shall not thereby become a trap
representation.

8 Where an operator is applied to a value that has more than one object representation,
which object representation is used shall not affect the value of the result.43) Where a
value is stored in an object using a type that has more than one object representation for
that value, it is unspecified which representation is used, but a trap representation shall
not be generated.

Forward references: declarations (6.7), expressions (6.5), lvalues, arrays, and function
designators (6.3.2.1).

6.2.6.2 Integer types

1 For unsigned integer types other thanunsigned char , the bits of the object
representation shall be divided into two groups: value bits and padding bits (there need
not be any of the latter). If there areN value bits, each bit shall represent a different
power of 2 between 1 and 2N−1, so that objects of that type shall be capable of
representing values from 0 to 2N − 1 using a pure binary representation; this shall be
known as the value representation. The values of any padding bits are unspecified.44)

2 For signed integer types, the bits of the object representation shall be divided into three
groups: value bits, padding bits, and the sign bit. There need not be any padding bits;
there shall be exactly one sign bit. Each bit that is a value bit shall have the same value as

42) Thus, for example, structure assignment may be implemented element-at-a-time or viamemcpy.

43) It is possible for objectsx andy with the same effective typeT to have the same value when they are
accessed as objects of typeT, but to have different values in other contexts. In particular, if== is
defined for typeT, thenx == y does not imply thatmemcmp(&x, &y, sizeof (T)) == 0 .
Furthermore,x == y does not necessarily imply thatx andy have the same value; other operations
on values of typeT may distinguish between them.

44) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exceptional condition such as an overflow, and this cannot occur
with unsigned types. All other combinations of padding bits are alternative object representations of
the value specified by the value bits.

38 Language §6.2.6.2

©ISO/IEC ISO/IEC 9899:1999 (E)

the same bit in the object representation of the corresponding unsigned type (if there are
M value bits in the signed type andN in the unsigned type, thenM ≤ N). If the sign bit
is zero, it shall not affect the resulting value. If the sign bit is one, the value shall be
modified in one of the following ways:

— the corresponding value with sign bit 0 is negated (sign and magnitude);

— the sign bit has the value−(2N) (two’s complement);

— the sign bit has the value−(2N − 1) (one’s complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1
and all value bits zero (for the first two), or with sign bit and all value bits 1 (for one’s
complement), is a trap representation or a normal value. In the case of sign and
magnitude and one’s complement, if this representation is a normal value it is called a
negative zero.

3 If the implementation supports negative zeros, they shall be generated only by:

— the&, | , ˆ , ˜ , <<, and>> operators with arguments that produce such a value;

— the+, - , * , / , and%operators where one argument is a negative zero and the result is
zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero,
and whether a negative zero becomes a normal zero when stored in an object.

4 If the implementation does not support negative zeros, the behavior of the&, | , ˆ , ˜ , <<,
and>> operators with arguments that would produce such a value is undefined.

5 The values of any padding bits are unspecified.45) A valid (non-trap) object representation
of a signed integer type where the sign bit is zero is a valid object representation of the
corresponding unsigned type, and shall represent the same value.

6 The precision of an integer type is the number of bits it uses to represent values,
excluding any sign and padding bits. Thewidth of an integer type is the same but
including any sign bit; thus for unsigned integer types the two values are the same, while
for signed integer types the width is one greater than the precision.

45) Some combinations of padding bits might generate trap representations, for example, if one padding
bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap
representation other than as part of an exceptional condition such as an overflow. All other
combinations of padding bits are alternative object representations of the value specified by the value
bits.

§6.2.6.2 Language 39

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.2.7 Compatible type and composite type

1 Tw o types havecompatible typeif their types are the same. Additional rules for
determining whether two types are compatible are described in 6.7.2 for type specifiers,
in 6.7.3 for type qualifiers, and in 6.7.5 for declarators.46) Moreover, two structure,
union, or enumerated types declared in separate translation units are compatible if their
tags and members satisfy the following requirements: If one is declared with a tag, the
other shall be declared with the same tag. If both are completed types, then the following
additional requirements apply: there shall be a one-to-one correspondence between their
members such that each pair of corresponding members are declared with compatible
types, and such that if one member of a corresponding pair is declared with a name, the
other member is declared with the same name. For two structures, corresponding
members shall be declared in the same order. For two structures or unions, corresponding
bit-fields shall have the same widths. For two enumerations, corresponding members
shall have the same values.

2 All declarations that refer to the same object or function shall have compatible type;
otherwise, the behavior is undefined.

3 A composite typecan be constructed from two types that are compatible; it is a type that
is compatible with both of the two types and satisfies the following conditions:

— If one type is an array of known constant size, the composite type is an array of that
size; otherwise, if one type is a variable length array, the composite type is that type.

— If only one type is a function type with a parameter type list (a function prototype),
the composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter
in the composite parameter type list is the composite type of the corresponding
parameters.

These rules apply recursively to the types from which the two types are derived.

4 For an identifier with internal or external linkage declared in a scope in which a prior
declaration of that identifier is visible,47) if the prior declaration specifies internal or
external linkage, the type of the identifier at the later declaration becomes the composite
type.

46) Tw o types need not be identical to be compatible.

47) As specified in 6.2.1, the later declaration might hide the prior declaration.

40 Language §6.2.7

©ISO/IEC ISO/IEC 9899:1999 (E)

5 EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:

int f(int (*)(char *), double (*)[3]);

§6.2.7 Language 41

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.3 Conversions

1 Several operators convert operand values from one type to another automatically. This
subclause specifies the result required from such animplicit conversion, as well as those
that result from a cast operation (anexplicit conversion). The list in 6.3.1.8 summarizes
the conversions performed by most ordinary operators; it is supplemented as required by
the discussion of each operator in 6.5.

2 Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers

1 Every integer type has aninteger conversion rankdefined as follows:

— No two signed integer types shall have the same rank, even if they hav e the same
representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer
type with less precision.

— The rank oflong long int shall be greater than the rank oflong int , which
shall be greater than the rank ofint , which shall be greater than the rank ofshort
int , which shall be greater than the rank ofsigned char .

— The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended
integer type with the same width.

— The rank ofchar shall equal the rank ofsigned char andunsigned char .

— The rank of_Bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type
(see 6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed
integer type with the same precision is implementation-defined, but still subject to the
other rules for determining the integer conversion rank.

— For all integer typesT1, T2, and T3, if T1 has greater rank thanT2 and T2 has
greater rank thanT3, thenT1 has greater rank thanT3.

2 The following may be used in an expression wherever anint or unsigned int may
be used:

42 Language §6.3.1.1

©ISO/IEC ISO/IEC 9899:1999 (E)

— An object or expression with an integer type whose integer conversion rank is less
than the rank ofint andunsigned int .

— A bit-field of type_Bool , int , signed int , or unsigned int .

If an int can represent all values of the original type, the value is converted to anint ;
otherwise, it is converted to anunsigned int . These are called theinteger
promotions.48) All other types are unchanged by the integer promotions.

3 The integer promotions preserve value including sign. As discussed earlier, whether a
‘‘plain’’ char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1).

6.3.1.2 Boolean type

1 When any scalar value is converted to_Bool , the result is 0 if the value compares equal
to 0; otherwise, the result is 1.

6.3.1.3 Signed and unsigned integers

1 When a value with integer type is converted to another integer type other than_Bool , if
the value can be represented by the new type, it is unchanged.

2 Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.49)

3 Otherwise, the new type is signed and the value cannot be represented in it; either the
result is implementation-defined or an implementation-defined signal is raised.

6.3.1.4 Real floating and integer

1 When a finite value of real floating type is converted to an integer type other than_Bool ,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the behavior is undefined.50)

2 When a value of integer type is converted to a real floating type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented

48) The integer promotions are applied only: as part of the usual arithmetic conversions, to certain
argument expressions, to the operands of the unary+, - , and˜ operators, and to both operands of the
shift operators, as specified by their respective subclauses.

49) The rules describe arithmetic on the mathematical value, not the value of a given type of expression.

50) The remaindering operation performed when a value of integer type is converted to unsigned type
need not be performed when a value of real floating type is converted to unsigned type. Thus, the
range of portable real floating values is (−1,Utype_MAX+1).

§6.3.1.4 Language 43

ISO/IEC 9899:1999 (E) ©ISO/IEC

exactly, the result is either the nearest higher or nearest lower representable value, chosen
in an implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined.

6.3.1.5 Real floating types

1 When afloat is promoted todouble or long double , or adouble is promoted
to long double , its value is unchanged.

2 When adouble is demoted tofloat , a long double is demoted todouble or
float , or a value being represented in greater precision and range than required by its
semantic type (see 6.3.1.8) is explicitly converted to its semantic type, if the value being
converted can be represented exactly in the new type, it is unchanged. If the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower representable value, chosen
in an implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined.

6.3.1.6 Complex types

1 When a value of complex type is converted to another complex type, both the real and
imaginary parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

1 When a value of real type is converted to a complex type, the real part of the complex
result value is determined by the rules of conversion to the corresponding real type and
the imaginary part of the complex result value is a positive zero or an unsigned zero.

2 When a value of complex type is converted to a real type, the imaginary part of the
complex value is discarded and the value of the real part is converted according to the
conversion rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions

1 Many operators that expect operands of arithmetic type cause conversions and yield result
types in a similar way. The purpose is to determine acommon real typefor the operands
and result. For the specified operands, each operand is converted, without change of type
domain, to a type whose corresponding real type is the common real type. Unless
explicitly stated otherwise, the common real type is also the corresponding real type of
the result, whose type domain is the type domain of the operands if they are the same,
and complex otherwise. This pattern is called theusual arithmetic conversions:

First, if the corresponding real type of either operand islong double , the other
operand is converted, without change of type domain, to a type whose
corresponding real type islong double .

44 Language §6.3.1.8

©ISO/IEC ISO/IEC 9899:1999 (E)

Otherwise, if the corresponding real type of either operand isdouble , the other
operand is converted, without change of type domain, to a type whose
corresponding real type isdouble .

Otherwise, if the corresponding real type of either operand isfloat , the other
operand is converted, without change of type domain, to a type whose
corresponding real type isfloat .51)

Otherwise, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or
equal to the rank of the type of the other operand, then the operand with
signed integer type is converted to the type of the operand with unsigned
integer type.

Otherwise, if the type of the operand with signed integer type can represent
all of the values of the type of the operand with unsigned integer type, then
the operand with unsigned integer type is converted to the type of the
operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

2 The values of floating operands and of the results of floating expressions may be
represented in greater precision and range than that required by the type; the types are not
changed thereby.52)

51) For example, addition of adouble _Complex and afloat entails just the conversion of the
float operand todouble (and yields adouble _Complex result).

52) The cast and assignment operators are still required to perform their specified conversions as
described in 6.3.1.4 and 6.3.1.5.

§6.3.1.8 Language 45

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.3.2 Other operands

6.3.2.1 Lvalues, arrays, and function designators

1 An lvalue is an expression with an object type or an incomplete type other thanvoid ;53)

if an lvalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the lvalue used to
designate the object. Amodifiable lvalueis an lvalue that does not have array type, does
not have an incomplete type, does not have a const-qualified type, and if it is a structure
or union, does not have any member (including, recursively, any member or element of
all contained aggregates or unions) with a const-qualified type.

2 Except when it is the operand of thesizeof operator, the unary& operator, the++
operator, the-- operator, or the left operand of the. operator or an assignment operator,
an lvalue that does not have array type is converted to the value stored in the designated
object (and is no longer an lvalue). If the lvalue has qualified type, the value has the
unqualified version of the type of the lvalue; otherwise, the value has the type of the
lvalue. If the lvalue has an incomplete type and does not have array type, the behavior is
undefined.

3 Except when it is the operand of thesizeof operator or the unary& operator, or is a
string literal used to initialize an array, an expression that has type ‘‘array oftype’’ is
converted to an expression with type ‘‘pointer totype’’ that points to the initial element of
the array object and is not an lvalue. If the array object has register storage class, the
behavior is undefined.

4 A function designatoris an expression that has function type. Except when it is the
operand of thesizeof operator54) or the unary& operator, a function designator with
type ‘‘function returningtype’’ is converted to an expression that has type ‘‘pointer to
function returningtype’’.

Forward references: address and indirection operators (6.5.3.2), assignment operators
(6.5.16), common definitions<stddef.h> (7.17), initialization (6.7.8), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), thesizeof operator (6.5.3.4), structure and union members (6.5.2.3).

53) The name ‘‘lvalue’’ comes originally from the assignment expressionE1 = E2 , in which the left
operandE1 is required to be a (modifiable) lvalue. It is perhaps better considered as representing an
object ‘‘locator value’’. What is sometimes called ‘‘rvalue’’ is in this International Standard described
as the ‘‘value of an expression’’.

An obvious example of an lvalue is an identifier of an object. As a further example, ifE is a unary
expression that is a pointer to an object,*E is an lvalue that designates the object to whichE points.

54) Because this conversion does not occur, the operand of thesizeof operator remains a function
designator and violates the constraint in 6.5.3.4.

46 Language §6.3.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

6.3.2.2 void

1 The (nonexistent) value of avoid expression(an expression that has typevoid) shall not
be used in any way, and implicit or explicit conversions (except tovoid) shall not be
applied to such an expression. If an expression of any other type is evaluated as a void
expression, its value or designator is discarded. (A void expression is evaluated for its
side effects.)

6.3.2.3 Pointers

1 A pointer tovoid may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a pointer tovoid
and back again; the result shall compare equal to the original pointer.

2 For any qualifierq, a pointer to a non-q-qualified type may be converted to a pointer to
theq-qualified version of the type; the values stored in the original and converted pointers
shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to type
void * , is called anull pointer constant.55) If a null pointer constant is converted to a
pointer type, the resulting pointer, called anull pointer, is guaranteed to compare unequal
to a pointer to any object or function.

4 Conversion of a null pointer to another pointer type yields a null pointer of that type.
Any two null pointers shall compare equal.

5 An integer may be converted to any pointer type. Except as previously specified, the
result is implementation-defined, might not be correctly aligned, might not point to an
entity of the referenced type, and might be a trap representation.56)

6 Any pointer type may be converted to an integer type. Except as previously specified, the
result is implementation-defined. If the result cannot be represented in the integer type,
the behavior is undefined. The result need not be in the range of values of any integer
type.

7 A pointer to an object or incomplete type may be converted to a pointer to a different
object or incomplete type. If the resulting pointer is not correctly aligned57) for the
pointed-to type, the behavior is undefined. Otherwise, when converted back again, the
result shall compare equal to the original pointer. When a pointer to an object is

55) The macroNULL is defined in<stddef.h> (and other headers) as a null pointer constant; see 7.17.

56) The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to
be consistent with the addressing structure of the execution environment.

57) In general, the concept ‘‘correctly aligned’’ is transitive: if a pointer to type A is correctly aligned for a
pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A is
correctly aligned for a pointer to type C.

§6.3.2.3 Language 47

ISO/IEC 9899:1999 (E) ©ISO/IEC

converted to a pointer to a character type, the result points to the lowest addressed byte of
the object. Successive increments of the result, up to the size of the object, yield pointers
to the remaining bytes of the object.

8 A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function whose type is not compatible with the pointed-to type,
the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types
capable of holding object pointers (7.18.1.4), simple assignment (6.5.16.1).

48 Language §6.3.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4 Lexical elements
Syntax

1 token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above

Constraints

2 Each preprocessing token that is converted to a token shall have the lexical form of a
keyword, an identifier, a constant, a string literal, or a punctuator.

Semantics

3 A tokenis the minimal lexical element of the language in translation phases 7 and 8. The
categories of tokens are: keywords, identifiers, constants, string literals, and punctuators.
A preprocessing token is the minimal lexical element of the language in translation
phases 3 through 6. The categories of preprocessing tokens are: header names,
identifiers, preprocessing numbers, character constants, string literals, punctuators, and
single non-white-space characters that do not lexically match the other preprocessing
token categories.58) If a ' or a " character matches the last category, the behavior is
undefined. Preprocessing tokens can be separated bywhite space; this consists of
comments (described later), orwhite-space characters(space, horizontal tab, new-line,
vertical tab, and form-feed), or both. As described in 6.10, in certain circumstances
during translation phase 4, white space (or the absence thereof) serves as more than
preprocessing token separation. White space may appear within a preprocessing token
only as part of a header name or between the quotation characters in a character constant
or string literal.

58) An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot
occur in source files.

§6.4 Language 49

ISO/IEC 9899:1999 (E) ©ISO/IEC

4 If the input stream has been parsed into preprocessing tokens up to a given character, the
next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token. There is one exception to this rule: a header name preprocessing
token is only recognized within a#include preprocessing directive, and within such a
directive, a sequence of characters that could be either a header name or a string literal is
recognized as the former.

5 EXAMPLE 1 The program fragment1Ex is parsed as a preprocessing number token (one that is not a
valid floating or integer constant token), even though a parse as the pair of preprocessing tokens1 andEx
might produce a valid expression (for example, ifEx were a macro defined as+1). Similarly, the program
fragment1E1 is parsed as a preprocessing number (one that is a valid floating constant token), whether or
notE is a macro name.

6 EXAMPLE 2 The program fragmentx+++++y is parsed asx ++ ++ + y , which violates a constraint on
increment operators, even though the parsex ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5),
floating constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), preprocessing directives (6.10), preprocessing numbers (6.4.8), string literals
(6.4.5).

6.4.1 Keywords
Syntax

1 keyword: one of
auto
break
case
char
const
continue
default
do
double
else

enum
extern
float
for
goto
if
inline
int
long
register

restrict
return
short
signed
sizeof
static
struct
switch
typedef
union

unsigned
void
volatile
while
_Bool
_Complex
_Imaginary

Semantics

2 The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as
keywords, and shall not be used otherwise.

50 Language §6.4.1

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4.2 Identifiers

6.4.2.1 General

Syntax

1 identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Semantics

2 An identifier is a sequence of nondigit characters (including the underscore_, the
lowercase and uppercase Latin letters, and other characters) and digits, which designates
one or more entities as described in 6.2.1. Lowercase and uppercase letters are distinct.
There is no specific limit on the maximum length of an identifier.

3 Each universal character name in an identifier shall designate a character whose encoding
in ISO/IEC 10646 falls into one of the ranges specified in annex D.59) The initial
character shall not be a universal character name designating a digit. An implementation
may allow multibyte characters that are not part of the basic source character set to
appear in identifiers; which characters and their correspondence to universal character
names is implementation-defined.

4 When preprocessing tokens are converted to tokens during translation phase 7, if a
preprocessing token could be converted to either a keyword or an identifier, it is converted
to a keyword.

59) On systems in which linkers cannot accept extended characters, an encoding of the universal character
name may be used in forming valid external identifiers. For example, some otherwise unused
character or sequence of characters may be used to encode the\u in a universal character name.
Extended characters may produce a long external identifier.

§6.4.2.1 Language 51

ISO/IEC 9899:1999 (E) ©ISO/IEC

Implementation limits

5 As discussed in 5.2.4.1, an implementation may limit the number of significant initial
characters in an identifier; the limit for anexternal name(an identifier that has external
linkage) may be more restrictive than that for aninternal name(a macro name or an
identifier that does not have external linkage). The number of significant characters in an
identifier is implementation-defined.

6 Any identifiers that differ in a significant character are different identifiers. If two
identifiers differ only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).

6.4.2.2 Predefined identifiers

Semantics

1 The identifier _ _func_ _ shall be implicitly declared by the translator as if,
immediately following the opening brace of each function definition, the declaration

static const char _ _func_ _[] = " function-name";

appeared, wherefunction-nameis the name of the lexically-enclosing function.60)

2 This name is encoded as if the implicit declaration had been written in the source
character set and then translated into the execution character set as indicated in translation
phase 5.

3 EXAMPLE Consider the code fragment:

#include <stdio.h>
void myfunc(void)
{

printf("%s\n", _ _func_ _);
/* ... */

}

Each time the function is called, it will print to the standard output stream:

myfunc

Forward references: function definitions (6.9.1).

60) Since the name_ _func_ _ is reserved for any use by the implementation (7.1.3), if any other
identifier is explicitly declared using the name_ _func_ _, the behavior is undefined.

52 Language §6.4.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4.3 Universal character names
Syntax

1 universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit

hexadecimal-digit hexadecimal-digit

Constraints

2 A universal character name shall not specify a character whose short identifier is less than
00A0 other than 0024 ($), 0040 (@), or 0060 (‘), nor one in the range D800 through
DFFF inclusive.61)

Description

3 Universal character names may be used in identifiers, character constants, and string
literals to designate characters that are not in the basic character set.

Semantics

4 The universal character name\U nnnnnnnndesignates the character whose eight-digit
short identifier (as specified by ISO/IEC 10646) isnnnnnnnn.62) Similarly, the universal
character name\u nnnndesignates the character whose four-digit short identifier isnnnn
(and whose eight-digit short identifier is 0000nnnn).

61) The disallowed characters are the characters in the basic character set and the code positions reserved
by ISO/IEC 10646 for control characters, the character DELETE, and the S-zone (reserved for use by
UTF−16).

62) Short identifiers for characters were first specified in ISO/IEC 10646−1/AMD9:1997.

§6.4.3 Language 53

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.4.4 Constants
Syntax

1 constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Constraints

2 The value of a constant shall be in the range of representable values for its type.

Semantics

3 Each constant has a type, determined by its form and value, as detailed later.

6.4.4.1 Integer constants

Syntax

1 integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix:one of
0x 0X

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

54 Language §6.4.4.1

©ISO/IEC ISO/IEC 9899:1999 (E)

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

long-long-suffix: one of
ll LL

Description

2 An integer constant begins with a digit, but has no period or exponent part. It may have a
prefix that specifies its base and a suffix that specifies its type.

3 A decimal constant begins with a nonzero digit and consists of a sequence of decimal
digits. An octal constant consists of the prefix0 optionally followed by a sequence of the
digits 0 through7 only. A hexadecimal constant consists of the prefix0x or 0X followed
by a sequence of the decimal digits and the lettersa (or A) throughf (or F) with values
10 through 15 respectively.

Semantics

4 The value of a decimal constant is computed base 10; that of an octal constant, base 8;
that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

5 The type of an integer constant is the first of the corresponding list in which its value can
be represented.

§6.4.4.1 Language 55

ISO/IEC 9899:1999 (E) ©ISO/IEC

Octal or Hexadecimal
Suffix Decimal Constant Constant

int int
long int unsigned int

long int
unsigned long int
long long int
unsigned long long int

long long int

none

unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

u or U

long int long int
unsigned long int
long long int
unsigned long long int

long long int
l or L

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int

long long int
unsigned long long int

ll or LL long long int

Both u or U
and ll or LL

unsigned long long int unsigned long long int

If an integer constant cannot be represented by any type in its list, it may have an
extended integer type, if the extended integer type can represent its value. If all of the
types in the list for the constant are signed, the extended integer type shall be signed. If
all of the types in the list for the constant are unsigned, the extended integer type shall be
unsigned. If the list contains both signed and unsigned types, the extended integer type
may be signed or unsigned.

56 Language §6.4.4.1

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4.4.2 Floating constants

Syntax

1 floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt .

hexadecimal-digit-sequence
hexadecimal-digit-sequence.

binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f l F L

§6.4.4.2 Language 57

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

2 A floating constant has asignificand partthat may be followed by anexponent partand a
suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a period (.), followed by a
digit sequence representing the fraction part. The components of the exponent part are an
e, E, p, or P followed by an exponent consisting of an optionally signed digit sequence.
Either the whole-number part or the fraction part has to be present; for decimal floating
constants, either the period or the exponent part has to be present.

Semantics

3 The significand part is interpreted as a (decimal or hexadecimal) rational number; the
digit sequence in the exponent part is interpreted as a decimal integer. For decimal
floating constants, the exponent indicates the power of 10 by which the significand part is
to be scaled. For hexadecimal floating constants, the exponent indicates the power of 2
by which the significand part is to be scaled. For decimal floating constants, and also for
hexadecimal floating constants whenFLT_RADIX is not a power of 2, the result is either
the nearest representable value, or the larger or smaller representable value immediately
adjacent to the nearest representable value, chosen in an implementation-defined manner.
For hexadecimal floating constants whenFLT_RADIX is a power of 2, the result is
correctly rounded.

4 An unsuffixed floating constant has typedouble . If suffixed by the letterf or F, it has
typefloat . If suffixed by the letterl or L, it has typelong double .

5 Floating constants are converted to internal format as if at translation-time. The
conversion of a floating constant shall not raise an exceptional condition or a floating-
point exception at execution time.

Recommended practice

6 The implementation should produce a diagnostic message if a hexadecimal constant
cannot be represented exactly in its evaluation format; the implementation should then
proceed with the translation of the program.

7 The translation-time conversion of floating constants should match the execution-time
conversion of character strings by library functions, such asstrtod , giv en matching
inputs suitable for both conversions, the same result format, and default execution-time
rounding.63)

63) The specification for the library functions recommends more accurate conversion than required for
floating constants (see 7.20.1.3).

58 Language §6.4.4.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6.4.4.3 Enumeration constants

Syntax

1 enumeration-constant:
identifier

Semantics

2 An identifier declared as an enumeration constant has typeint .

Forward references: enumeration specifiers (6.7.2.2).

6.4.4.4 Character constants

Syntax

1 character-constant:
' c-char-sequence'
L' c-char-sequence'

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote' , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence:one of
\' \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

§6.4.4.4 Language 59

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

2 An integer character constant is a sequence of one or more multibyte characters enclosed
in single-quotes, as in'x' . A wide character constant is the same, except prefixed by the
letter L. With a few exceptions detailed later, the elements of the sequence are any
members of the source character set; they are mapped in an implementation-defined
manner to members of the execution character set.

3 The single-quote' , the double-quote" , the question-mark?, the backslash\ , and
arbitrary integer values are representable according to the following table of escape
sequences:

single quote' \'
double quote" \"
question mark? \?
backslash\ \\
octal character \ octal digits
hexadecimal character \x hexadecimal digits

4 The double-quote" and question-mark? are representable either by themselves or by the
escape sequences\" and \? , respectively, but the single-quote' and the backslash\
shall be represented, respectively, by the escape sequences\' and\\ .

5 The octal digits that follow the backslash in an octal escape sequence are taken to be part
of the construction of a single character for an integer character constant or of a single
wide character for a wide character constant. The numerical value of the octal integer so
formed specifies the value of the desired character or wide character.

6 The hexadecimal digits that follow the backslash and the letterx in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer
character constant or of a single wide character for a wide character constant. The
numerical value of the hexadecimal integer so formed specifies the value of the desired
character or wide character.

7 Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

8 In addition, characters not in the basic character set are representable by universal
character names and certain nongraphic characters are representable by escape sequences
consisting of the backslash\ followed by a lowercase letter:\a , \b , \f , \n , \r , \t ,
and\v .64)

64) The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash,
the result is not a token and a diagnostic is required. See ‘‘future language directions’’ (6.11.4).

60 Language §6.4.4.4

©ISO/IEC ISO/IEC 9899:1999 (E)

Constraints

9 The value of an octal or hexadecimal escape sequence shall be in the range of
representable values for the typeunsigned char for an integer character constant, or
the unsigned type corresponding towchar_t for a wide character constant.

Semantics

10 An integer character constant has typeint . The value of an integer character constant
containing a single character that maps to a single-byte execution character is the
numerical value of the representation of the mapped character interpreted as an integer.
The value of an integer character constant containing more than one character (e.g.,
'ab'), or containing a character or escape sequence that does not map to a single-byte
execution character, is implementation-defined. If an integer character constant contains
a single character or escape sequence, its value is the one that results when an object with
typechar whose value is that of the single character or escape sequence is converted to
type int .

11 A wide character constant has typewchar_t , an integer type defined in the
<stddef.h> header. The value of a wide character constant containing a single
multibyte character that maps to a member of the extended execution character set is the
wide character corresponding to that multibyte character, as defined by thembtowc
function, with an implementation-defined current locale. The value of a wide character
constant containing more than one multibyte character, or containing a multibyte
character or escape sequence not represented in the extended execution character set, is
implementation-defined.

12 EXAMPLE 1 The construction'\0' is commonly used to represent the null character.

13 EXAMPLE 2 Consider implementations that use two’s-complement representation for integers and eight
bits for objects that have typechar . In an implementation in which typechar has the same range of
values assigned char , the integer character constant'\xFF' has the value−1; if type char has the
same range of values asunsigned char , the character constant'\xFF' has the value+255 .

14 EXAMPLE 3 Even if eight bits are used for objects that have typechar , the construction'\x123'
specifies an integer character constant containing only one character, since a hexadecimal escape sequence
is terminated only by a non-hexadecimal character. To specify an integer character constant containing the
two characters whose values are'\x12' and'3' , the construction'\0223' may be used, since an octal
escape sequence is terminated after three octal digits. (The value of this two-character integer character
constant is implementation-defined.)

15 EXAMPLE 4 Even if 12 or more bits are used for objects that have typewchar_t , the construction
L'\1234' specifies the implementation-defined value that results from the combination of the values
0123 and'4' .

Forward references: common definitions<stddef.h> (7.17), thembtowc function
(7.20.7.2).

§6.4.4.4 Language 61

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.4.5 String literals
Syntax

1 string-literal:
" s-char-sequenceopt "
L" s-char-sequenceopt "

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

Description

2 A character string literalis a sequence of zero or more multibyte characters enclosed in
double-quotes, as in"xyz" . A wide string literal is the same, except prefixed by the
letterL.

3 The same considerations apply to each element of the sequence in a character string
literal or a wide string literal as if it were in an integer character constant or a wide
character constant, except that the single-quote' is representable either by itself or by the
escape sequence\' , but the double-quote" shall be represented by the escape sequence
\" .

Semantics

4 In translation phase 6, the multibyte character sequences specified by any sequence of
adjacent character and wide string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens are wide string literal tokens, the resulting
multibyte character sequence is treated as a wide string literal; otherwise, it is treated as a
character string literal.

5 In translation phase 7, a byte or code of value zero is appended to each multibyte
character sequence that results from a string literal or literals.65) The multibyte character
sequence is then used to initialize an array of static storage duration and length just
sufficient to contain the sequence. For character string literals, the array elements have
type char , and are initialized with the individual bytes of the multibyte character
sequence; for wide string literals, the array elements have typewchar_t , and are
initialized with the sequence of wide characters corresponding to the multibyte character

65) A character string literal need not be a string (see 7.1.1), because a null character may be embedded in
it by a\0 escape sequence.

62 Language §6.4.5

©ISO/IEC ISO/IEC 9899:1999 (E)

sequence, as defined by thembstowcs function with an implementation-defined current
locale. The value of a string literal containing a multibyte character or escape sequence
not represented in the execution character set is implementation-defined.

6 It is unspecified whether these arrays are distinct provided their elements have the
appropriate values. If the program attempts to modify such an array, the behavior is
undefined.

7 EXAMPLE This pair of adjacent character string literals

"\x12" "3"

produces a single character string literal containing the two characters whose values are'\x12' and'3' ,
because escape sequences are converted into single members of the execution character set just prior to
adjacent string literal concatenation.

Forward references: common definitions<stddef.h> (7.17), the mbstowcs
function (7.20.8.1).

6.4.6 Punctuators
Syntax

1 punctuator: one of
[] () { } . ->
++ -- & * + - ˜ !
/ % << >> < > <= >= == != ˆ | && ||
? : ; ...
= *= /= %= += -= <<= >>= &= ˆ= |=
, # ##
<: :> <% %> %: %:%:

Semantics

2 A punctuator is a symbol that has independent syntactic and semantic significance.
Depending on context, it may specify an operation to be performed (which in turn may
yield a value or a function designator, produce a side effect, or some combination thereof)
in which case it is known as anoperator (other forms of operator also exist in some
contexts). Anoperandis an entity on which an operator acts.

§6.4.6 Language 63

ISO/IEC 9899:1999 (E) ©ISO/IEC

3 In all aspects of the language, the six tokens66)

<: :> <% %> %: %:%:

behave, respectively, the same as the six tokens

[] { } # ##

except for their spelling.67)

Forward references: expressions (6.5), declarations (6.7), preprocessing directives
(6.10), statements (6.8).

6.4.7 Header names
Syntax

1 header-name:
< h-char-sequence>
" q-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and>

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

the new-line character and"

Semantics

2 The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 6.10.2.

3 If the characters' , \ , " , // , or /* occur in the sequence between the< and> delimiters,
the behavior is undefined. Similarly, if the characters' , \ , // , or /* occur in the

66) These tokens are sometimes called ‘‘digraphs’’.

67) Thus [and <: behave differently when ‘‘stringized’’ (see 6.10.3.2), but can otherwise be freely
interchanged.

64 Language §6.4.7

©ISO/IEC ISO/IEC 9899:1999 (E)

sequence between the" delimiters, the behavior is undefined.68) A header name
preprocessing token is recognized only within a#include preprocessing directive.

4 EXAMPLE The following sequence of characters:

0x3<1/a.h>1e2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited
by a{ on the left and a} on the right).

{0x3 }{<}{1}{ / }{a}{ . }{h}{>}{1e2 }
{#}{ include } {<1/a.h> }
{#}{define } {const }{ . }{member}{@}{$}

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers
Syntax

1 pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description

2 A preprocessing number begins with a digit optionally preceded by a period (.) and may
be followed by valid identifier characters and the character sequencese+, e- , E+, E- ,
p+, p- , P+, or P- .

3 Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

4 A preprocessing number does not have type or a value; it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer
constant token.

68) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

§6.4.8 Language 65

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.4.9 Comments

1 Except within a character constant, a string literal, or a comment, the characters/*
introduce a comment. The contents of such a comment are examined only to identify
multibyte characters and to find the characters*/ that terminate it.69)

2 Except within a character constant, a string literal, or a comment, the characters//
introduce a comment that includes all multibyte characters up to, but not including, the
next new-line character. The contents of such a comment are examined only to identify
multibyte characters and to find the terminating new-line character.

3 EXAMPLE

"a//b" // four-character string literal
#include "//e" // undefined behavior
// */ // comment, not syntax error
f = g/**//h; // equivalent tof = g / h;
//\
i(); // part of a two-line comment
/\
/ j(); // part of a two-line comment
#define glue(x,y) x##y
glue(/,/) k(); // syntax error, not comment
/*//*/ l(); // equivalent tol();
m = n//**/o

+ p; // equivalent tom = n + p;

69) Thus,/* ... */ comments do not nest.

66 Language §6.4.9

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5 Expressions

1 An expressionis a sequence of operators and operands that specifies computation of a
value, or that designates an object or a function, or that generates side effects, or that
performs a combination thereof.

2 Between the previous and next sequence point an object shall have its stored value
modified at most once by the evaluation of an expression. Furthermore, the prior value
shall be read only to determine the value to be stored.70)

3 The grouping of operators and operands is indicated by the syntax.71) Except as specified
later (for the function-call() , &&, || , ?: , and comma operators), the order of evaluation
of subexpressions and the order in which side effects take place are both unspecified.

4 Some operators (the unary operator˜ , and the binary operators<<, >>, &, ˆ , and | ,
collectively described asbitwise operators) are required to have operands that have
integer type. These operators return values that depend on the internal representations of
integers, and have implementation-defined and undefined aspects for signed types.

5 If an exceptional conditionoccurs during the evaluation of an expression (that is, if the
result is not mathematically defined or not in the range of representable values for its
type), the behavior is undefined.

6 Theeffective typeof an object for an access to its stored value is the declared type of the
object, if any.72) If a value is stored into an object having no declared type through an
lvalue having a type that is not a character type, then the type of the lvalue becomes the
effective type of the object for that access and for subsequent accesses that do not modify

70) This paragraph renders undefined statement expressions such as

i = ++i + 1;
a[i++] = i;

while allowing

i = i + 1;
a[i] = i;

71) The syntax specifies the precedence of operators in the evaluation of an expression, which is the same
as the order of the major subclauses of this subclause, highest precedence first. Thus, for example, the
expressions allowed as the operands of the binary+ operator (6.5.6) are those expressions defined in
6.5.1 through 6.5.6. The exceptions are cast expressions (6.5.4) as operands of unary operators
(6.5.3), and an operand contained between any of the following pairs of operators: grouping
parentheses() (6.5.1), subscripting brackets[] (6.5.2.1), function-call parentheses() (6.5.2.2), and
the conditional operator?: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is
indicated in each subclause by the syntax for the expressions discussed therein.

72) Allocated objects have no declared type.

§6.5 Language 67

ISO/IEC 9899:1999 (E) ©ISO/IEC

the stored value. If a value is copied into an object having no declared type using
memcpyor memmove, or is copied as an array of character type, then the effective type
of the modified object for that access and for subsequent accesses that do not modify the
value is the effective type of the object from which the value is copied, if it has one. For
all other accesses to an object having no declared type, the effective type of the object is
simply the type of the lvalue used for the access.

7 An object shall have its stored value accessed only by an lvalue expression that has one of
the following types:73)

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the object,

— a type that is the signed or unsigned type corresponding to the effective type of the
object,

— a type that is the signed or unsigned type corresponding to a qualified version of the
effective type of the object,

— an aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union), or

— a character type.

8 A floating expression may becontracted, that is, evaluated as though it were an atomic
operation, thereby omitting rounding errors implied by the source code and the
expression evaluation method.74) TheFP_CONTRACTpragma in<math.h> provides a
way to disallow contracted expressions. Otherwise, whether and how expressions are
contracted is implementation-defined.75)

Forward references: theFP_CONTRACTpragma (7.12.2), copying functions (7.21.2).

73) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

74) A contracted expression might also omit the raising of floating-point exceptions.

75) This license is specifically intended to allow implementations to exploit fast machine instructions that
combine multiple C operators. As contractions potentially undermine predictability, and can even
decrease accuracy for containing expressions, their use needs to be well-defined and clearly
documented.

68 Language §6.5

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5.1 Primary expressions
Syntax

1 primary-expression:
identifier
constant
string-literal
(expression)

Semantics

2 An identifier is a primary expression, provided it has been declared as designating an
object (in which case it is an lvalue) or a function (in which case it is a function
designator).76)

3 A constant is a primary expression. Its type depends on its form and value, as detailed in
6.4.4.

4 A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

5 A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an lvalue, a function designator, or a void
expression if the unparenthesized expression is, respectively, an lvalue, a function
designator, or a void expression.

Forward references: declarations (6.7).

6.5.2 Postfix operators
Syntax

1 postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(argument-expression-listopt)
postfix-expression. identifier
postfix-expression-> identifier
postfix-expression++
postfix-expression--
(type-name) { initializer-list }
(type-name) { initializer-list , }

76) Thus, an undeclared identifier is a violation of the syntax.

§6.5.2 Language 69

ISO/IEC 9899:1999 (E) ©ISO/IEC

argument-expression-list:
assignment-expression
argument-expression-list, assignment-expression

6.5.2.1 Array subscripting

Constraints

1 One of the expressions shall have type ‘‘pointer to objecttype’’, the other expression shall
have integer type, and the result has type ‘‘type’’.

Semantics

2 A postfix expression followed by an expression in square brackets[] is a subscripted
designation of an element of an array object. The definition of the subscript operator[]
is thatE1[E2] is identical to(*((E1)+(E2))) . Because of the conversion rules that
apply to the binary+ operator, ifE1 is an array object (equivalently, a pointer to the
initial element of an array object) andE2 is an integer,E1[E2] designates theE2-th
element ofE1 (counting from zero).

3 Successive subscript operators designate an element of a multidimensional array object.
If E is an n-dimensional array (n ≥ 2) with dimensionsi × j × . . . × k, then E (used as
other than an lvalue) is converted to a pointer to an (n − 1)-dimensional array with
dimensions j × . . . × k. If the unary* operator is applied to this pointer explicitly, or
implicitly as a result of subscripting, the result is the pointed-to (n − 1)-dimensional array,
which itself is converted into a pointer if used as other than an lvalue. It follows from this
that arrays are stored in row-major order (last subscript varies fastest).

4 EXAMPLE Consider the array object defined by the declaration

int x[3][5];

Herex is a 3× 5 array ofint s; more precisely,x is an array of three element objects, each of which is an
array of fiveint s. In the expressionx[i] , which is equivalent to(*((x)+(i))) , x is first converted to
a pointer to the initial array of fiveint s. Theni is adjusted according to the type ofx , which conceptually
entails multiplyingi by the size of the object to which the pointer points, namely an array of fiveint
objects. The results are added and indirection is applied to yield an array of fiveint s. When used in the
expressionx[i][j] , that array is in turn converted to a pointer to the first of theint s, sox[i][j]
yields anint .

Forward references: additive operators (6.5.6), address and indirection operators
(6.5.3.2), array declarators (6.7.5.2).

70 Language §6.5.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5.2.2 Function calls

Constraints

1 The expression that denotes the called function77) shall have type pointer to function
returningvoid or returning an object type other than an array type.

2 If the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall
have a type such that its value may be assigned to an object with the unqualified version
of the type of its corresponding parameter.

Semantics

3 A postfix expression followed by parentheses() containing a possibly empty, comma-
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

4 An argument may be an expression of any object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argument.78)

5 If the expression that denotes the called function has type pointer to function returning an
object type, the function call expression has the same type as that object type, and has the
value determined as specified in 6.8.6.4. Otherwise, the function call has typevoid . If
an attempt is made to modify the result of a function call or to access it after the next
sequence point, the behavior is undefined.

6 If the expression that denotes the called function has a type that does not include a
prototype, the integer promotions are performed on each argument, and arguments that
have typefloat are promoted todouble . These are called thedefault argument
promotions. If the number of arguments does not equal the number of parameters, the
behavior is undefined. If the function is defined with a type that includes a prototype, and
either the prototype ends with an ellipsis (, ...) or the types of the arguments after
promotion are not compatible with the types of the parameters, the behavior is undefined.
If the function is defined with a type that does not include a prototype, and the types of
the arguments after promotion are not compatible with those of the parameters after
promotion, the behavior is undefined, except for the following cases:

77) Most often, this is the result of converting an identifier that is a function designator.

78) A function may change the values of its parameters, but these changes cannot affect the values of the
arguments. On the other hand, it is possible to pass a pointer to an object, and the function may
change the value of the object pointed to. A parameter declared to have array or function type is
converted to a parameter with a pointer type as described in 6.9.1.

§6.5.2.2 Language 71

ISO/IEC 9899:1999 (E) ©ISO/IEC

— one promoted type is a signed integer type, the other promoted type is the
corresponding unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or
void .

7 If the expression that denotes the called function has a type that does include a prototype,
the arguments are implicitly converted, as if by assignment, to the types of the
corresponding parameters, taking the type of each parameter to be the unqualified version
of its declared type. The ellipsis notation in a function prototype declarator causes
argument type conversion to stop after the last declared parameter. The default argument
promotions are performed on trailing arguments.

8 No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

9 If the function is defined with a type that is not compatible with the type (of the
expression) pointed to by the expression that denotes the called function, the behavior is
undefined.

10 The order of evaluation of the function designator, the actual arguments, and
subexpressions within the actual arguments is unspecified, but there is a sequence point
before the actual call.

11 Recursive function calls shall be permitted, both directly and indirectly through any chain
of other functions.

12 EXAMPLE In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functionsf1 , f2 , f3 , andf4 may be called in any order. All side effects have to be completed before
the function pointed to bypf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.5.3), function
definitions (6.9.1), thereturn statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members

Constraints

1 The first operand of the. operator shall have a qualified or unqualified structure or union
type, and the second operand shall name a member of that type.

2 The first operand of the-> operator shall have type ‘‘pointer to qualified or unqualified
structure’’ or ‘‘pointer to qualified or unqualified union’’, and the second operand shall
name a member of the type pointed to.

72 Language §6.5.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

Semantics

3 A postfix expression followed by the. operator and an identifier designates a member of
a structure or union object. The value is that of the named member, and is an lvalue if the
first expression is an lvalue. If the first expression has qualified type, the result has the
so-qualified version of the type of the designated member.

4 A postfix expression followed by the-> operator and an identifier designates a member
of a structure or union object. The value is that of the named member of the object to
which the first expression points, and is an lvalue.79) If the first expression is a pointer to
a qualified type, the result has the so-qualified version of the type of the designated
member.

5 One special guarantee is made in order to simplify the use of unions: if a union contains
several structures that share a common initial sequence (see below), and if the union
object currently contains one of these structures, it is permitted to inspect the common
initial part of any of them anywhere that a declaration of the completed type of the union
is visible. Tw o structures share acommon initial sequenceif corresponding members
have compatible types (and, for bit-fields, the same widths) for a sequence of one or more
initial members.

6 EXAMPLE 1 If f is a function returning a structure or union, andx is a member of that structure or
union,f().x is a valid postfix expression but is not an lvalue.

7 EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;
const struct s cs;
volatile struct s vs;

the various members have the types:

s.i int
s.ci const int
cs.i const int
cs.ci const int
vs.i volatile int
vs.ci volatile const int

79) If &E is a valid pointer expression (where& is the ‘‘address-of ’’ operator, which generates a pointer to
its operand), the expression(&E)->MOS is the same asE.MOS.

§6.5.2.3 Language 73

ISO/IEC 9899:1999 (E) ©ISO/IEC

8 EXAMPLE 3 The following is a valid fragment:

union {
struct {

int alltypes;
} n;
struct {

int type;
int intnode;

} ni;
struct {

int type;
double doublenode;

} nf;
} u;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... */
if (u.n.alltypes == 1)

if (sin(u.nf.doublenode) == 0.0)
/* ... */

The following is not a valid fragment (because the union type is not visible within functionf):

struct t1 { int m; };
struct t2 { int m; };
int f(struct t1 * p1, struct t2 * p2)
{

if (p1->m < 0)
p2->m = -p2->m;

return p1->m;
}
int g()
{

union {
struct t1 s1;
struct t2 s2;

} u;
/* ... */
return f(&u.s1, &u.s2);

}

Forward references: address and indirection operators (6.5.3.2), structure and union
specifiers (6.7.2.1).

74 Language §6.5.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5.2.4 Postfix increment and decrement operators

Constraints

1 The operand of the postfix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable lvalue.

Semantics

2 The result of the postfix++ operator is the value of the operand. After the result is
obtained, the value of the operand is incremented. (That is, the value 1 of the appropriate
type is added to it.) See the discussions of additive operators and compound assignment
for information on constraints, types, and conversions and the effects of operations on
pointers. The side effect of updating the stored value of the operand shall occur between
the previous and the next sequence point.

3 The postfix-- operator is analogous to the postfix++ operator, except that the value of
the operand is decremented (that is, the value 1 of the appropriate type is subtracted from
it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals

Constraints

1 The type name shall specify an object type or an array of unknown size, but not a variable
length array type.

2 No initializer shall attempt to provide a value for an object not contained within the entire
unnamed object specified by the compound literal.

3 If the compound literal occurs outside the body of a function, the initializer list shall
consist of constant expressions.

Semantics

4 A postfix expression that consists of a parenthesized type name followed by a brace-
enclosed list of initializers is acompound literal. It provides an unnamed object whose
value is given by the initializer list.80)

5 If the type name specifies an array of unknown size, the size is determined by the
initializer list as specified in 6.7.8, and the type of the compound literal is that of the
completed array type. Otherwise (when the type name specifies an object type), the type
of the compound literal is that specified by the type name. In either case, the result is an
lvalue.

80) Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types
or void only, and the result of a cast expression is not an lvalue.

§6.5.2.5 Language 75

ISO/IEC 9899:1999 (E) ©ISO/IEC

6 The value of the compound literal is that of an unnamed object initialized by the
initializer list. If the compound literal occurs outside the body of a function, the object
has static storage duration; otherwise, it has automatic storage duration associated with
the enclosing block.

7 All the semantic rules and constraints for initializer lists in 6.7.8 are applicable to
compound literals.81)

8 String literals, and compound literals with const-qualified types, need not designate
distinct objects.82)

9 EXAMPLE 1 The file scope definition

int *p = (int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the
second, four. The expressions in this compound literal are required to be constant. The unnamed object
has static storage duration.

10 EXAMPLE 2 In contrast, in

void f(void)
{

int *p;
/* ...*/
p = (int [2]){*p};
/* ...*/

}

p is assigned the address of the first element of an array of two ints, the first having the value previously
pointed to byp and the second, zero. The expressions in this compound literal need not be constant. The
unnamed object has automatic storage duration.

11 EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects
created using compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers tostruct point :

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

12 EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

81) For example, subobjects without explicit initializers are initialized to zero.

82) This allows implementations to share storage for string literals and constant compound literals with
the same or overlapping representations.

76 Language §6.5.2.5

©ISO/IEC ISO/IEC 9899:1999 (E)

13 EXAMPLE 5 The following three expressions have different meanings:

"/tmp/fileXXXXXX"
(char []){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array ofchar , but need not be modifiable; the last
two hav e automatic storage duration when they occur within the body of a function, and the first of these
two is modifiable.

14 EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory
and can even be shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

15 EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly
linked object. For example, there is no way to write a self-referential compound literal that could be used
as the function argument in place of the named objectendless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

16 EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)
{

struct s *p = 0, *q;
int j = 0;

again:
q = p, p = &((struct s){ j++ });
if (j < 2) goto again;

return p == q && q->i == 1;
}

The functionf() always returns the value 1.

17 Note that if an iteration statement were used instead of an explicitgoto and a labeled statement, the
lifetime of the unnamed object would be the body of the loop only, and on entry next time aroundp would
have an indeterminate value, which would result in undefined behavior.

Forward references: type names (6.7.6), initialization (6.7.8).

§6.5.2.5 Language 77

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.3 Unary operators
Syntax

1 unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - ˜ !

6.5.3.1 Prefix increment and decrement operators

Constraints

1 The operand of the prefix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable lvalue.

Semantics

2 The value of the operand of the prefix++ operator is incremented. The result is the new
value of the operand after incrementation. The expression++E is equivalent to(E+=1) .
See the discussions of additive operators and compound assignment for information on
constraints, types, side effects, and conversions and the effects of operations on pointers.

3 The prefix-- operator is analogous to the prefix++ operator, except that the value of the
operand is decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.3.2 Address and indirection operators

Constraints

1 The operand of the unary& operator shall be either a function designator, the result of a
[] or unary* operator, or an lvalue that designates an object that is not a bit-field and is
not declared with theregister storage-class specifier.

2 The operand of the unary* operator shall have pointer type.

Semantics

3 The unary& operator returns the address of its operand. If the operand has type ‘‘type’’,
the result has type ‘‘pointer totype’’. If the operand is the result of a unary* operator,
neither that operator nor the& operator is evaluated and the result is as if both were
omitted, except that the constraints on the operators still apply and the result is not an
lvalue. Similarly, if the operand is the result of a[] operator, neither the& operator nor

78 Language §6.5.3.2

©ISO/IEC ISO/IEC 9899:1999 (E)

the unary* that is implied by the[] is evaluated and the result is as if the& operator
were removed and the[] operator were changed to a+ operator. Otherwise, the result is
a pointer to the object or function designated by its operand.

4 The unary* operator denotes indirection. If the operand points to a function, the result is
a function designator; if it points to an object, the result is an lvalue designating the
object. If the operand has type ‘‘pointer totype’’, the result has type ‘‘type’’. If an
invalid value has been assigned to the pointer, the behavior of the unary* operator is
undefined.83)

Forward references: storage-class specifiers (6.7.1), structure and union specifiers
(6.7.2.1).

6.5.3.3 Unary arithmetic operators

Constraints

1 The operand of the unary+ or - operator shall have arithmetic type; of the˜ operator,
integer type; of the! operator, scalar type.

Semantics

2 The result of the unary+ operator is the value of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

3 The result of the unary- operator is the negative of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

4 The result of thẽ operator is the bitwise complement of its (promoted) operand (that is,
each bit in the result is set if and only if the corresponding bit in the converted operand is
not set). The integer promotions are performed on the operand, and the result has the
promoted type. If the promoted type is an unsigned type, the expression˜E is equivalent
to the maximum value representable in that type minusE.

5 The result of the logical negation operator! is 0 if the value of its operand compares
unequal to 0, 1 if the value of its operand compares equal to 0. The result has typeint .
The expression!E is equivalent to(0==E) .

83) Thus,&*E is equivalent toE (even if E is a null pointer), and&(E1[E2]) to ((E1)+(E2)) . It is
always true that ifE is a function designator or an lvalue that is a valid operand of the unary&
operator,*&E is a function designator or an lvalue equal toE. If *P is an lvalue andT is the name of
an object pointer type,*(T)P is an lvalue that has a type compatible with that to whichT points.

Among the invalid values for dereferencing a pointer by the unary* operator are a null pointer, an
address inappropriately aligned for the type of object pointed to, and the address of an object after the
end of its lifetime.

§6.5.3.3 Language 79

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.3.4 Thesizeof operator

Constraints

1 Thesizeof operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or to an expression that
designates a bit-field member.

Semantics

2 The sizeof operator yields the size (in bytes) of its operand, which may be an
expression or the parenthesized name of a type. The size is determined from the type of
the operand. The result is an integer. If the type of the operand is a variable length array
type, the operand is evaluated; otherwise, the operand is not evaluated and the result is an
integer constant.

3 When applied to an operand that has typechar , unsigned char , or signed char ,
(or a qualified version thereof) the result is 1. When applied to an operand that has array
type, the result is the total number of bytes in the array.84) When applied to an operand
that has structure or union type, the result is the total number of bytes in such an object,
including internal and trailing padding.

4 The value of the result is implementation-defined, and its type (an unsigned integer type)
is size_t , defined in<stddef.h> (and other headers).

5 EXAMPLE 1 A principal use of thesizeof operator is in communication with routines such as storage
allocators and I/O systems. A storage-allocation function might accept a size (in bytes) of an object to
allocate and return a pointer tovoid . For example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of thealloc function should ensure that its return value is aligned suitably for
conversion to a pointer todouble .

6 EXAMPLE 2 Another use of thesizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

7 EXAMPLE 3 In this example, the size of a variable-length array is computed and returned from a
function:

#include <stddef.h>

size_t fsize3(int n)
{

char b[n+3]; // variable length array
return sizeof b; // execution timesizeof

}

84) When applied to a parameter declared to have array or function type, thesizeof operator yields the
size of the adjusted (pointer) type (see 6.9.1).

80 Language §6.5.3.4

©ISO/IEC ISO/IEC 9899:1999 (E)

int main()
{

size_t size;
size = fsize3(10); // fsize3 returns 13
return 0;

}

Forward references: common definitions<stddef.h> (7.17), declarations (6.7),
structure and union specifiers (6.7.2.1), type names (6.7.6), array declarators (6.7.5.2).

6.5.4 Cast operators
Syntax

1 cast-expression:
unary-expression
(type-name) cast-expression

Constraints

2 Unless the type name specifies a void type, the type name shall specify qualified or
unqualified scalar type and the operand shall have scalar type.

3 Conversions that involve pointers, other than where permitted by the constraints of
6.5.16.1, shall be specified by means of an explicit cast.

Semantics

4 Preceding an expression by a parenthesized type name converts the value of the
expression to the named type. This construction is called acast.85) A cast that specifies
no conversion has no effect on the type or value of an expression.86)

Forward references: equality operators (6.5.9), function declarators (including
prototypes) (6.7.5.3), simple assignment (6.5.16.1), type names (6.7.6).

85) A cast does not yield an lvalue. Thus, a cast to a qualified type has the same effect as a cast to the
unqualified version of the type.

86) If the value of the expression is represented with greater precision or range than required by the type
named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is
the same as the named type.

§6.5.4 Language 81

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.5 Multiplicative operators
Syntax

1 multiplicative-expression:
cast-expression
multiplicative-expression* cast-expression
multiplicative-expression/ cast-expression
multiplicative-expression% cast-expression

Constraints

2 Each of the operands shall have arithmetic type. The operands of the%operator shall
have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary* operator is the product of the operands.

5 The result of the/ operator is the quotient from the division of the first operand by the
second; the result of the%operator is the remainder. In both operations, if the value of
the second operand is zero, the behavior is undefined.

6 When integers are divided, the result of the/ operator is the algebraic quotient with any
fractional part discarded.87) If the quotient a/b is representable, the expression
(a/b)*b + a%b shall equala.

6.5.6 Additive operators
Syntax

1 additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

Constraints

2 For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shall have integer type. (Incrementing is
equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

87) This is often called ‘‘truncation toward zero’’.

82 Language §6.5.6

©ISO/IEC ISO/IEC 9899:1999 (E)

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— the left operand is a pointer to an object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

Semantics

4 If both operands have arithmetic type, the usual arithmetic conversions are performed on
them.

5 The result of the binary+ operator is the sum of the operands.

6 The result of the binary- operator is the difference resulting from the subtraction of the
second operand from the first.

7 For the purposes of these operators, a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its
element type.

8 When an expression that has integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element of
an array object, and the array is large enough, the result points to an element offset from
the original element such that the difference of the subscripts of the resulting and original
array elements equals the integer expression. In other words, if the expressionP points to
the i-th element of an array object, the expressions(P)+N (equivalently,N+(P)) and
(P)-N (whereNhas the valuen) point to, respectively, thei+n -th andi−n -th elements of
the array object, provided they exist. Moreover, if the expressionP points to the last
element of an array object, the expression(P)+1 points one past the last element of the
array object, and if the expressionQ points one past the last element of an array object,
the expression(Q)-1 points to the last element of the array object. If both the pointer
operand and the result point to elements of the same array object, or one past the last
element of the array object, the evaluation shall not produce an overflow; otherwise, the
behavior is undefined. If the result points one past the last element of the array object, it
shall not be used as the operand of a unary* operator that is evaluated.

9 When two pointers are subtracted, both shall point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the
subscripts of the two array elements. The size of the result is implementation-defined,
and its type (a signed integer type) isptrdiff_t defined in the<stddef.h> header.
If the result is not representable in an object of that type, the behavior is undefined. In
other words, if the expressionsP andQpoint to, respectively, thei-th andj -th elements of
an array object, the expression(P)-(Q) has the valuei−j provided the value fits in an
object of typeptrdiff_t . Moreover, if the expressionP points either to an element of

§6.5.6 Language 83

ISO/IEC 9899:1999 (E) ©ISO/IEC

an array object or one past the last element of an array object, and the expressionQpoints
to the last element of the same array object, the expression((Q)+1)-(P) has the same
value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has the value zero if the
expressionP points one past the last element of the array object, even though the
expression(Q)+1 does not point to an element of the array object.88)

10 EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
int n = 4, m = 3;
int a[n][m];
int (*p)[m] = a; // p == &a[0]
p += 1; // p == &a[1]
(*p)[2] = 99; // a[1][2] == 99
n = p - a; // n == 1

}

11 If array a in the above example were declared to be an array of known constant size, and pointerp were
declared to be a pointer to an array of the same known constant size (pointing toa), the results would be
the same.

Forward references: array declarators (6.7.5.2), common definitions<stddef.h>
(7.17).

6.5.7 Bitwise shift operators
Syntax

1 shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

Constraints

2 Each of the operands shall have integer type.

Semantics

3 The integer promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. If the value of the right operand is negative or is
greater than or equal to the width of the promoted left operand, the behavior is undefined.

88) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In
this scheme the integer expression added to or subtracted from the converted pointer is first multiplied
by the size of the object originally pointed to, and the resulting pointer is converted back to the
original type. For pointer subtraction, the result of the difference between the character pointers is
similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap
another object in the program) just after the end of the object in order to satisfy the ‘‘one past the last
element’’ requirements.

84 Language §6.5.7

©ISO/IEC ISO/IEC 9899:1999 (E)

4 The result ofE1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. IfE1 has an unsigned type, the value of the result isE1 × 2E2, reduced modulo
one more than the maximum value representable in the result type. IfE1 has a signed
type and nonnegative value, andE1 × 2E2 is representable in the result type, then that is
the resulting value; otherwise, the behavior is undefined.

5 The result ofE1 >> E2 is E1 right-shiftedE2 bit positions. IfE1 has an unsigned type
or if E1 has a signed type and a nonnegative value, the value of the result is the integral
part of the quotient ofE1 divided by the quantity, 2 raised to the powerE2. If E1 has a
signed type and a negative value, the resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

1 relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

Constraints

2 One of the following shall hold:

— both operands have real type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— both operands are pointers to qualified or unqualified versions of compatible
incomplete types.

Semantics

3 If both of the operands have arithmetic type, the usual arithmetic conversions are
performed.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its
element type.

5 When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. If two pointers to object or incomplete types both
point to the same object, or both point one past the last element of the same array object,
they compare equal. If the objects pointed to are members of the same aggregate object,
pointers to structure members declared later compare greater than pointers to members
declared earlier in the structure, and pointers to array elements with larger subscript

§6.5.8 Language 85

ISO/IEC 9899:1999 (E) ©ISO/IEC

values compare greater than pointers to elements of the same array with lower subscript
values. All pointers to members of the same union object compare equal. If the
expressionP points to an element of an array object and the expressionQ points to the
last element of the same array object, the pointer expressionQ+1 compares greater than
P. In all other cases, the behavior is undefined.

6 Each of the operators< (less than),> (greater than),<= (less than or equal to), and>=
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it is false.89)

The result has typeint .

6.5.9 Equality operators
Syntax

1 equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

Constraints

2 One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ofvoid ; or

— one operand is a pointer and the other is a null pointer constant.

Semantics

3 The == (equal to) and!= (not equal to) operators are analogous to the relational
operators except for their lower precedence.90) Each of the operators yields 1 if the
specified relation is true and 0 if it is false. The result has typeint . For any pair of
operands, exactly one of the relations is true.

4 If both of the operands have arithmetic type, the usual arithmetic conversions are
performed. Values of complex types are equal if and only if both their real parts are equal
and also their imaginary parts are equal. Any two values of arithmetic types from
different type domains are equal if and only if the results of their conversions to the
(complex) result type determined by the usual arithmetic conversions are equal.

89) The expressiona<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it
means(a<b)<c ; in other words, ‘‘ifa is less thanb, compare 1 toc ; otherwise, compare 0 toc ’’.

90) Because of the precedences,a<b == c<d is 1 whenevera<b andc<d have the same truth-value.

86 Language §6.5.9

©ISO/IEC ISO/IEC 9899:1999 (E)

5 Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a
null pointer constant, the null pointer constant is converted to the type of the pointer. If
one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ofvoid , the former is converted to the type of the latter.

6 Tw o pointers compare equal if and only if both are null pointers, both are pointers to the
same object (including a pointer to an object and a subobject at its beginning) or function,
both are pointers to one past the last element of the same array object, or one is a pointer
to one past the end of one array object and the other is a pointer to the start of a different
array object that happens to immediately follow the first array object in the address
space.91)

6.5.10 BitwiseAND operator
Syntax

1 AND-expression:
equality-expression
AND-expression& equality-expression

Constraints

2 Each of the operands shall have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary& operator is the bitwiseAND of the operands (that is, each bit in
the result is set if and only if each of the corresponding bits in the converted operands is
set).

91) Tw o objects may be adjacent in memory because they are adjacent elements of a larger array or
adjacent members of a structure with no padding between them, or because the implementation chose
to place them so, even though they are unrelated. If prior invalid pointer operations (such as accesses
outside array bounds) produced undefined behavior, subsequent comparisons also produce undefined
behavior.

§6.5.10 Language 87

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.11 Bitwise exclusiveOR operator
Syntax

1 exclusive-OR-expression:
AND-expression
exclusive-OR-expression̂ AND-expression

Constraints

2 Each of the operands shall have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of thê operator is the bitwise exclusiveOR of the operands (that is, each bit
in the result is set if and only if exactly one of the corresponding bits in the converted
operands is set).

6.5.12 Bitwise inclusiveOR operator
Syntax

1 inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression| exclusive-OR-expression

Constraints

2 Each of the operands shall have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of the| operator is the bitwise inclusiveOR of the operands (that is, each bit in
the result is set if and only if at least one of the corresponding bits in the converted
operands is set).

88 Language §6.5.12

©ISO/IEC ISO/IEC 9899:1999 (E)

6.5.13 LogicalAND operator
Syntax

1 logical-AND-expression:
inclusive-OR-expression
logical-AND-expression&& inclusive-OR-expression

Constraints

2 Each of the operands shall have scalar type.

Semantics

3 The&& operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it
yields 0. The result has typeint .

4 Unlike the bitwise binary& operator, the&& operator guarantees left-to-right evaluation;
there is a sequence point after the evaluation of the first operand. If the first operand
compares equal to 0, the second operand is not evaluated.

6.5.14 LogicalOR operator
Syntax

1 logical-OR-expression:
logical-AND-expression
logical-OR-expression|| logical-AND-expression

Constraints

2 Each of the operands shall have scalar type.

Semantics

3 The|| operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it
yields 0. The result has typeint .

4 Unlike the bitwise| operator, the|| operator guarantees left-to-right evaluation; there is
a sequence point after the evaluation of the first operand. If the first operand compares
unequal to 0, the second operand is not evaluated.

§6.5.14 Language 89

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.15 Conditional operator
Syntax

1 conditional-expression:
logical-OR-expression
logical-OR-expression? expression: conditional-expression

Constraints

2 The first operand shall have scalar type.

3 One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have compatible structure or union types;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ofvoid .

Semantics

4 The first operand is evaluated; there is a sequence point after its evaluation. The second
operand is evaluated only if the first compares unequal to 0; the third operand is evaluated
only if the first compares equal to 0; the result is the value of the second or third operand
(whichever is evaluated), converted to the type described below.92) If an attempt is made
to modify the result of a conditional operator or to access it after the next sequence point,
the behavior is undefined.

5 If both the second and third operands have arithmetic type, the result type that would be
determined by the usual arithmetic conversions, were they applied to those two operands,
is the type of the result. If both the operands have structure or union type, the result has
that type. If both operands have void type, the result has void type.

6 If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers
of the types pointed-to by both operands. Furthermore, if both operands are pointers to
compatible types or to differently qualified versions of compatible types, the result type is
a pointer to an appropriately qualified version of the composite type; if one operand is a
null pointer constant, the result has the type of the other operand; otherwise, one operand
is a pointer tovoid or a qualified version ofvoid , in which case the result type is a

92) A conditional expression does not yield an lvalue.

90 Language §6.5.15

©ISO/IEC ISO/IEC 9899:1999 (E)

pointer to an appropriately qualified version ofvoid .

7 EXAMPLE The common type that results when the second and third operands are pointers is determined
in two independent stages. The appropriate qualifiers, for example, do not depend on whether the two
pointers have compatible types.

8 Given the declarations

const void *c_vp;
void *vp;
const int *c_ip;
volatile int *v_ip;
int *ip;
const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in
which the first two columns are the second and third operands (in either order):

c_vp c_ip const void *
v_ip 0 volatile int *
c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *

6.5.16 Assignment operators
Syntax

1 assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator:one of
= *= /= %= += -= <<= >>= &= ˆ= |=

Constraints

2 An assignment operator shall have a modifiable lvalue as its left operand.

Semantics

3 An assignment operator stores a value in the object designated by the left operand. An
assignment expression has the value of the left operand after the assignment, but is not an
lvalue. The type of an assignment expression is the type of the left operand unless the
left operand has qualified type, in which case it is the unqualified version of the type of
the left operand. The side effect of updating the stored value of the left operand shall
occur between the previous and the next sequence point.

4 The order of evaluation of the operands is unspecified. If an attempt is made to modify
the result of an assignment operator or to access it after the next sequence point, the
behavior is undefined.

§6.5.16 Language 91

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.16.1 Simple assignment

Constraints

1 One of the following shall hold:93)

— the left operand has qualified or unqualified arithmetic type and the right has
arithmetic type;

— the left operand has a qualified or unqualified version of a structure or union type
compatible with the type of the right;

— both operands are pointers to qualified or unqualified versions of compatible types,
and the type pointed to by the left has all the qualifiers of the type pointed to by the
right;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ofvoid , and the type pointed to by the left has all
the qualifiers of the type pointed to by the right; or

— the left operand is a pointer and the right is a null pointer constant.

— the left operand has type_Bool and the right is a pointer.

Semantics

2 In simple assignment(=), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left
operand.

3 If the value being stored in an object is read from another object that overlaps in any way
the storage of the first object, then the overlap shall be exact and the two objects shall
have qualified or unqualified versions of a compatible type; otherwise, the behavior is
undefined.

4 EXAMPLE 1 In the program fragment

int f(void);
char c;
/* ... */
if ((c = f()) == -1)

/* ... */

the int value returned by the function may be truncated when stored in thechar , and then converted back
to int width prior to the comparison. In an implementation in which ‘‘plain’’char has the same range of
values asunsigned char (and char is narrower thanint), the result of the conversion cannot be
negative, so the operands of the comparison can never compare equal. Therefore, for full portability, the

93) The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion
(specified in 6.3.2.1) that changes lvalues to ‘‘the value of the expression’’ which removes any type
qualifiers from the type category of the expression.

92 Language §6.5.16.1

©ISO/IEC ISO/IEC 9899:1999 (E)

variablec should be declared asint .

5 EXAMPLE 2 In the fragment:

char c;
int i;
long l;

l = (c = i);

the value ofi is converted to the type of the assignment expressionc = i , that is,char type. The value
of the expression enclosed in parentheses is then converted to the type of the outer assignment expression,
that is,long int type.

6 EXAMPLE 3 Consider the fragment:

const char **cpp;
char *p;
const char c = 'A';

cpp = &p; // constraint violation
*cpp = &c; // valid
*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the
value of the const objectc .

6.5.16.2 Compound assignment

Constraints

1 For the operators+= and -= only, either the left operand shall be a pointer to an object
type and the right shall have integer type, or the left operand shall have qualified or
unqualified arithmetic type and the right shall have arithmetic type.

2 For the other operators, each operand shall have arithmetic type consistent with those
allowed by the corresponding binary operator.

Semantics

3 A compound assignmentof the form E1 op= E2 differs from the simple assignment
expressionE1 = E1 op (E2) only in that the lvalueE1 is evaluated only once.

§6.5.16.2 Language 93

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.5.17 Comma operator
Syntax

1 expression:
assignment-expression
expression, assignment-expression

Semantics

2 The left operand of a comma operator is evaluated as a void expression; there is a
sequence point after its evaluation. Then the right operand is evaluated; the result has its
type and value.94) If an attempt is made to modify the result of a comma operator or to
access it after the next sequence point, the behavior is undefined.

3 EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot
appear in contexts where a comma is used to separate items in a list (such as arguments to functions or lists
of initializers). On the other hand, it can be used within a parenthesized expression or within the second
expression of a conditional operator in such contexts. In the function call

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.8).

94) A comma operator does not yield an lvalue.

94 Language §6.5.17

©ISO/IEC ISO/IEC 9899:1999 (E)

6.6 Constant expressions
Syntax

1 constant-expression:
conditional-expression

Description

2 A constant expression can be evaluated during translation rather than runtime, and
accordingly may be used in any place that a constant may be.

Constraints

3 Constant expressions shall not contain assignment, increment, decrement, function-call,
or comma operators, except when they are contained within a subexpression that is not
evaluated.95)

4 Each constant expression shall evaluate to a constant that is in the range of representable
values for its type.

Semantics

5 An expression that evaluates to a constant is required in several contexts. If a floating
expression is evaluated in the translation environment, the arithmetic precision and range
shall be at least as great as if the expression were being evaluated in the execution
environment.

6 An integer constant expression96) shall have integer type and shall only have operands
that are integer constants, enumeration constants, character constants,sizeof
expressions whose results are integer constants, and floating constants that are the
immediate operands of casts. Cast operators in an integer constant expression shall only
convert arithmetic types to integer types, except as part of an operand to thesizeof
operator.

7 More latitude is permitted for constant expressions in initializers. Such a constant
expression shall be, or evaluate to, one of the following:

— an arithmetic constant expression,

— a null pointer constant,

95) The operand of asizeof operator is usually not evaluated (6.5.3.4).

96) An integer constant expression is used to specify the size of a bit-field member of a structure, the
value of an enumeration constant, the size of an array, or the value of acase constant. Further
constraints that apply to the integer constant expressions used in conditional-inclusion preprocessing
directives are discussed in 6.10.1.

§6.6 Language 95

ISO/IEC 9899:1999 (E) ©ISO/IEC

— an address constant, or

— an address constant for an object type plus or minus an integer constant expression.

8 An arithmetic constant expressionshall have arithmetic type and shall only have
operands that are integer constants, floating constants, enumeration constants, character
constants, andsizeof expressions. Cast operators in an arithmetic constant expression
shall only convert arithmetic types to arithmetic types, except as part of an operand to a
sizeof operator whose result is an integer constant.

9 An address constantis a null pointer, a pointer to an lvalue designating an object of static
storage duration, or a pointer to a function designator; it shall be created explicitly using
the unary& operator or an integer constant cast to pointer type, or implicitly by the use of
an expression of array or function type. The array-subscript[] and member-access.
and-> operators, the address& and indirection* unary operators, and pointer casts may
be used in the creation of an address constant, but the value of an object shall not be
accessed by use of these operators.

10 An implementation may accept other forms of constant expressions.

11 The semantic rules for the evaluation of a constant expression are the same as for
nonconstant expressions.97)

Forward references: array declarators (6.7.5.2), initialization (6.7.8).

97) Thus, in the following initialization,

static int i = 2 || 1 / 0;

the expression is a valid integer constant expression with value one.

96 Language §6.6

©ISO/IEC ISO/IEC 9899:1999 (E)

6.7 Declarations
Syntax

1 declaration:
declaration-specifiers init-declarator-listopt ;

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt
function-specifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints

2 A declaration shall declare at least a declarator (other than the parameters of a function or
the members of a structure or union), a tag, or the members of an enumeration.

3 If an identifier has no linkage, there shall be no more than one declaration of the identifier
(in a declarator or type specifier) with the same scope and in the same name space, except
for tags as specified in 6.7.2.3.

4 All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

5 A declaration specifies the interpretation and attributes of a set of identifiers. Adefinition
of an identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;

— for a function, includes the function body;98)

— for an enumeration constant or typedef name, is the (only) declaration of the
identifier.

6 The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The init-
declarator-list is a comma-separated sequence of declarators, each of which may have

98) Function definitions have a different syntax, described in 6.9.1.

§6.7 Language 97

ISO/IEC 9899:1999 (E) ©ISO/IEC

additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared.

7 If an identifier for an object is declared with no linkage, the type for the object shall be
complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer; in the case of function arguments (including in prototypes), it is the adjusted
type (see 6.7.5.3) that is required to be complete.

Forward references: declarators (6.7.5), enumeration specifiers (6.7.2.2), initialization
(6.7.8).

6.7.1 Storage-class specifiers
Syntax

1 storage-class-specifier:
typedef
extern
static
auto
register

Constraints

2 At most, one storage-class specifier may be given in the declaration specifiers in a
declaration.99)

Semantics

3 The typedef specifier is called a ‘‘storage-class specifier’’ for syntactic convenience
only; it is discussed in 6.7.7. The meanings of the various linkages and storage durations
were discussed in 6.2.2 and 6.2.4.

4 A declaration of an identifier for an object with storage-class specifierregister
suggests that access to the object be as fast as possible. The extent to which such
suggestions are effective is implementation-defined.100)

5 The declaration of an identifier for a function that has block scope shall have no explicit
storage-class specifier other thanextern .

99) See ‘‘future language directions’’ (6.11.5).

100) The implementation may treat anyregister declaration simply as anauto declaration. However,
whether or not addressable storage is actually used, the address of any part of an object declared with
storage-class specifierregister cannot be computed, either explicitly (by use of the unary&
operator as discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in
6.3.2.1). Thus, the only operator that can be applied to an array declared with storage-class specifier
register is sizeof .

98 Language §6.7.1

©ISO/IEC ISO/IEC 9899:1999 (E)

6 If an aggregate or union object is declared with a storage-class specifier other than
typedef , the properties resulting from the storage-class specifier, except with respect to
linkage, also apply to the members of the object, and so on recursively for any aggregate
or union member objects.

Forward references: type definitions (6.7.7).

6.7.2 Type specifiers
Syntax

1 type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name

Constraints

2 At least one type specifier shall be given in the declaration specifiers in each declaration,
and in the specifier-qualifier list in each struct declaration and type name. Each list of
type specifiers shall be one of the following sets (delimited by commas, when there is
more than one set on a line); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short , signed short , short int , or signed short int

— unsigned short , or unsigned short int

§6.7.2 Language 99

ISO/IEC 9899:1999 (E) ©ISO/IEC

— int , signed , or signed int

— unsigned , or unsigned int

— long , signed long , long int , or signed long int

— unsigned long , or unsigned long int

— long long , signed long long , long long int , or
signed long long int

— unsigned long long , or unsigned long long int

— float

— double

— long double

— _Bool

— float _Complex

— double _Complex

— long double _Complex

— float _Imaginary

— double _Imaginary

— long double _Imaginary

— struct or union specifier

— enum specifier

— typedef name

3 The type specifiers_Complex and_Imaginary shall not be used if the
implementation does not provide those types.101)

Semantics

4 Specifiers for structures, unions, and enumerations are discussed in 6.7.2.1 through
6.7.2.3. Declarations of typedef names are discussed in 6.7.7. The characteristics of the
other types are discussed in 6.2.5.

5 Each of the comma-separated sets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifierint designates the same type assigned
int or the same type asunsigned int .

101) Implementations are not required to provide imaginary types. Freestanding implementations are not
required to provide complex types.

100 Language §6.7.2

©ISO/IEC ISO/IEC 9899:1999 (E)

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1), tags (6.7.2.3), type definitions (6.7.7).

6.7.2.1 Structure and union specifiers

Syntax

1 struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

Constraints

2 A structure or union shall not contain a member with incomplete or function type (hence,
a structure shall not contain an instance of itself, but may contain a pointer to an instance
of itself), except that the last member of a structure with more than one named member
may have incomplete array type; such a structure (and any union containing, possibly
recursively, a member that is such a structure) shall not be a member of a structure or an
element of an array.

3 The expression that specifies the width of a bit-field shall be an integer constant
expression that has nonnegative value that shall not exceed the number of bits in an object
of the type that is specified if the colon and expression are omitted. If the value is zero,
the declaration shall have no declarator.

§6.7.2.1 Language 101

ISO/IEC 9899:1999 (E) ©ISO/IEC

4 A bit-field shall have a type that is a qualified or unqualified version of_Bool , signed
int , unsigned int , or some other implementation-defined type.

Semantics

5 As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose
storage is allocated in an ordered sequence, and a union is a type consisting of a sequence
of members whose storage overlap.

6 Structure and union specifiers have the same form.

7 The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a translation unit. The struct-declaration-list is a sequence of declarations for the
members of the structure or union. If the struct-declaration-list contains no named
members, the behavior is undefined. The type is incomplete until after the} that
terminates the list.

8 A member of a structure or union may have any object type other than a variably
modified type.102) In addition, a member may be declared to consist of a specified
number of bits (including a sign bit, if any). Such a member is called abit-field;103) its
width is preceded by a colon.

9 A bit-field is interpreted as a signed or unsigned integer type consisting of the specified
number of bits.104) If the value 0 or 1 is stored into a nonzero-width bit-field of type
_Bool , the value of the bit-field shall compare equal to the value stored.

10 An implementation may allocate any addressable storage unit large enough to hold a bit-
field. If enough space remains, a bit-field that immediately follows another bit-field in a
structure shall be packed into adjacent bits of the same unit. If insufficient space remains,
whether a bit-field that does not fit is put into the next unit or overlaps adjacent units is
implementation-defined. The order of allocation of bit-fields within a unit (high-order to
low-order or low-order to high-order) is implementation-defined. The alignment of the
addressable storage unit is unspecified.

11 A bit-field declaration with no declarator, but only a colon and a width, indicates an
unnamed bit-field.105) As a special case, a bit-field structure member with a width of 0
indicates that no further bit-field is to be packed into the unit in which the previous bit-

102) A structure or union can not contain a member with a variably modified type because member names
are not ordinary identifiers as defined in 6.2.3.

103) The unary& (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to
or arrays of bit-field objects.

104) As specified in 6.7.2 above, if the actual type specifier used isint or a typedef-name defined asint ,
then it is implementation-defined whether the bit-field is signed or unsigned.

105) An unnamed bit-field structure member is useful for padding to conform to externally imposed
layouts.

102 Language §6.7.2.1

©ISO/IEC ISO/IEC 9899:1999 (E)

field, if any, was placed.

12 Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

13 Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declared. A pointer to a
structure object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides), and vice versa. There may be unnamed
padding within a structure object, but not at its beginning.

14 The size of a union is sufficient to contain the largest of its members. The value of at
most one of the members can be stored in a union object at any time. A pointer to a
union object, suitably converted, points to each of its members (or if a member is a bit-
field, then to the unit in which it resides), and vice versa.

15 There may be unnamed padding at the end of a structure or union.

16 As a special case, the last element of a structure with more than one named member may
have an incomplete array type; this is called aflexible array member. With two
exceptions, the flexible array member is ignored. First, the size of the structure shall be
equal to the offset of the last element of an otherwise identical structure that replaces the
flexible array member with an array of unspecified length.106) Second, when a. (or ->)
operator has a left operand that is (a pointer to) a structure with a flexible array member
and the right operand names that member, it behaves as if that member were replaced
with the longest array (with the same element type) that would not make the structure
larger than the object being accessed; the offset of the array shall remain that of the
flexible array member, even if this would differ from that of the replacement array. If this
array would have no elements, it behaves as if it had one element but the behavior is
undefined if any attempt is made to access that element or to generate a pointer one past
it.

17 EXAMPLE Assuming that all array members are aligned the same, after the declarations:

struct s { int n; double d[]; };
struct ss { int n; double d[1]; };

the three expressions:

sizeof (struct s)
offsetof(struct s, d)
offsetof(struct ss, d)

have the same value. The structurestruct s has a flexible array memberd.

106) The length is unspecified to allow for the fact that implementations may give array members different
alignments according to their lengths.

§6.7.2.1 Language 103

ISO/IEC 9899:1999 (E) ©ISO/IEC

18 If sizeof (double) is 8, then after the following code is executed:

struct s *s1;
struct s *s2;
s1 = malloc(sizeof (struct s) + 64);
s2 = malloc(sizeof (struct s) + 46);

and assuming that the calls tomalloc succeed, the objects pointed to bys1 and s2 behave as if the
identifiers had been declared as:

struct { int n; double d[8]; } *s1;
struct { int n; double d[5]; } *s2;

19 Following the further successful assignments:

s1 = malloc(sizeof (struct s) + 10);
s2 = malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:

struct { int n; double d[1]; } *s1, *s2;

and:

double *dp;
dp = &(s1->d[0]); // valid
*dp = 42; // valid
dp = &(s2->d[0]); // valid
*dp = 42; // undefined behavior

20 The assignment:

*s1 = *s2;

only copies the membern and not any of the array elements. Similarly:

struct s t1 = { 0 }; // valid
struct s t2 = { 2 }; // valid
struct ss tt = { 1, { 4.2 }}; // valid
struct s t3 = { 1, { 4.2 }}; // invalid: there is nothing for the4.2 to initialize

t1.n = 4; // valid
t1.d[0] = 4.2; // undefined behavior

Forward references: tags (6.7.2.3).

6.7.2.2 Enumeration specifiers

Syntax

1 enum-specifier:
enum identifieropt { enumerator-list }
enum identifieropt { enumerator-list , }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

104 Language §6.7.2.2

©ISO/IEC ISO/IEC 9899:1999 (E)

enumerator:
enumeration-constant
enumeration-constant= constant-expression

Constraints

2 The expression that defines the value of an enumeration constant shall be an integer
constant expression that has a value representable as anint .

Semantics

3 The identifiers in an enumerator list are declared as constants that have typeint and
may appear wherever such are permitted.107) An enumerator with= defines its
enumeration constant as the value of the constant expression. If the first enumerator has
no =, the value of its enumeration constant is 0. Each subsequent enumerator with no=
defines its enumeration constant as the value of the constant expression obtained by
adding 1 to the value of the previous enumeration constant. (The use of enumerators with
= may produce enumeration constants with values that duplicate other values in the same
enumeration.) The enumerators of an enumeration are also known as its members.

4 Each enumerated type shall be compatible withchar , a signed integer type, or an
unsigned integer type. The choice of type is implementation-defined,108) but shall be
capable of representing the values of all the members of the enumeration. The
enumerated type is incomplete until after the} that terminates the list of enumerator
declarations.

5 EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, *cp;
col = claret;
cp = &col;
if (*cp != burgundy)

/* ... */

makeshue the tag of an enumeration, and then declarescol as an object that has that type andcp as a
pointer to an object that has that type. The enumerated values are in the set { 0, 1, 20, 21 }.

Forward references: tags (6.7.2.3).

107) Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from
each other and from other identifiers declared in ordinary declarators.

108) An implementation may delay the choice of which integer type until all enumeration constants have
been seen.

§6.7.2.2 Language 105

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.7.2.3 Tags

Constraints

1 A specific type shall have its content defined at most once.

2 A type specifier of the form

enum identifier

without an enumerator list shall only appear after the type it specifies is completed.

Semantics

3 All declarations of structure, union, or enumerated types that have the same scope and
use the same tag declare the same type. The type is incomplete109) until the closing brace
of the list defining the content, and complete thereafter.

4 Tw o declarations of structure, union, or enumerated types which are in different scopes or
use different tags declare distinct types. Each declaration of a structure, union, or
enumerated type which does not include a tag declares a distinct type.

5 A type specifier of the form

struct-or-union identifieropt { struct-declaration-list }
or

enum identifier { enumerator-list }
or

enum identifier { enumerator-list , }

declares a structure, union, or enumerated type. The list defines thestructure content,
union content, or enumeration content. If an identifier is provided,110) the type specifier
also declares the identifier to be the tag of that type.

6 A declaration of the form

struct-or-union identifier;

specifies a structure or union type and declares the identifier as a tag of that type.111)

109) An incomplete type may only by used when the size of an object of that type is not needed. It is not
needed, for example, when a typedef name is declared to be a specifier for a structure or union, or
when a pointer to or a function returning a structure or union is being declared. (See incomplete types
in 6.2.5.) The specification has to be complete before such a function is called or defined.

110) If there is no identifier, the type can, within the translation unit, only be referred to by the declaration
of which it is a part. Of course, when the declaration is of a typedef name, subsequent declarations
can make use of that typedef name to declare objects having the specified structure, union, or
enumerated type.

111) A similar construction withenum does not exist.

106 Language §6.7.2.3

©ISO/IEC ISO/IEC 9899:1999 (E)

7 If a type specifier of the form

struct-or-union identifier

occurs other than as part of one of the above forms, and no other declaration of the
identifier as a tag is visible, then it declares an incomplete structure or union type, and
declares the identifier as the tag of that type.111)

8 If a type specifier of the form

struct-or-union identifier
or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a
tag is visible, then it specifies the same type as that other declaration, and does not
redeclare the tag.

9 EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;

};

specifies a structure that contains an integer and two pointers to objects of the same type. Once this
declaration has been given, the declaration

struct tnode s, *sp;

declaress to be an object of the given type andsp to be a pointer to an object of the given type. With
these declarations, the expressionsp->left refers to the leftstruct tnode pointer of the object to
which sp points; the expressions.right->count designates thecount member of the rightstruct
tnode pointed to froms .

10 The following alternative formulation uses thetypedef mechanism:

typedef struct tnode TNODE;
struct tnode {

int count;
TNODE *left, *right;

};
TNODE s, *sp;

11 EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct s1 { struct s2 *s2p; /* ... */ }; // D1
struct s2 { struct s1 *s1p; /* ... */ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that ifs2 were already
declared as a tag in an enclosing scope, the declarationD1 would refer toit , not to the tags2 declared in
D2. To eliminate this context sensitivity, the declaration

struct s2;

may be inserted ahead ofD1. This declares a new tags2 in the inner scope; the declarationD2 then

§6.7.2.3 Language 107

ISO/IEC 9899:1999 (E) ©ISO/IEC

completes the specification of the new type.

Forward references: declarators (6.7.5), array declarators (6.7.5.2), type definitions
(6.7.7).

6.7.3 Type qualifiers
Syntax

1 type-qualifier:
const
restrict
volatile

Constraints

2 Types other than pointer types derived from object or incomplete types shall not be
restrict-qualified.

Semantics

3 The properties associated with qualified types are meaningful only for expressions that
are lvalues.112)

4 If the same qualifier appears more than once in the samespecifier-qualifier-list, either
directly or via one or moretypedef s, the behavior is the same as if it appeared only
once.

5 If an attempt is made to modify an object defined with a const-qualified type through use
of an lvalue with non-const-qualified type, the behavior is undefined. If an attempt is
made to refer to an object defined with a volatile-qualified type through use of an lvalue
with non-volatile-qualified type, the behavior is undefined.113)

6 An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring
to such an object shall be evaluated strictly according to the rules of the abstract machine,
as described in 5.1.2.3. Furthermore, at every sequence point the value last stored in the
object shall agree with that prescribed by the abstract machine, except as modified by the

112) The implementation may place aconst object that is notvolatile in a read-only region of
storage. Moreover, the implementation need not allocate storage for such an object if its address is
never used.

113) This applies to those objects that behave as if they were defined with qualified types, even if they are
never actually defined as objects in the program (such as an object at a memory-mapped input/output
address).

108 Language §6.7.3

©ISO/IEC ISO/IEC 9899:1999 (E)

unknown factors mentioned previously.114) What constitutes an access to an object that
has volatile-qualified type is implementation-defined.

7 An object that is accessed through a restrict-qualified pointer has a special association
with that pointer. This association, defined in 6.7.3.1 below, requires that all accesses to
that object use, directly or indirectly, the value of that particular pointer.115) The intended
use of therestrict qualifier (like the register storage class) is to promote
optimization, and deleting all instances of the qualifier from all preprocessing translation
units composing a conforming program does not change its meaning (i.e., observable
behavior).

8 If the specification of an array type includes any type qualifiers, the element type is so-
qualified, not the array type. If the specification of a function type includes any type
qualifiers, the behavior is undefined.116)

9 For two qualified types to be compatible, both shall have the identically qualified version
of a compatible type; the order of type qualifiers within a list of specifiers or qualifiers
does not affect the specified type.

10 EXAMPLE 1 An object declared

extern const volatile int real_time_clock;

may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

11 EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

const struct s { int mem; } cs = { 1 };
struct s ncs; // the objectncs is modifiable
typedef int A[2][3];
const A a = {{4, 5, 6}, {7, 8, 9}}; // array of array of const int
int *pi;
const int *pci;

ncs = cs; // valid
cs = ncs; // violates modifiable lvalue constraint for=
pi = &ncs.mem; // valid
pi = &cs.mem; // violates type constraints for=
pci = &cs.mem; // valid
pi = a[0]; // invalid: a[0] has type ‘‘const int * ’’

114) A volatile declaration may be used to describe an object corresponding to a memory-mapped
input/output port or an object accessed by an asynchronously interrupting function. Actions on
objects so declared shall not be ‘‘optimized out’’ by an implementation or reordered except as
permitted by the rules for evaluating expressions.

115) For example, a statement that assigns a value returned bymalloc to a single pointer establishes this
association between the allocated object and the pointer.

116) Both of these can occur through the use oftypedef s.

§6.7.3 Language 109

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.7.3.1 Formal definition ofrestrict

1 Let D be a declaration of an ordinary identifier that provides a means of designating an
objectP as a restrict-qualified pointer to typeT.

2 If D appears inside a block and does not have storage classextern , let B denote the
block. If D appears in the list of parameter declarations of a function definition, letB
denote the associated block. Otherwise, letB denote the block ofmain (or the block of
whatever function is called at program startup in a freestanding environment).

3 In what follows, a pointer expressionE is said to bebasedon objectP if (at some
sequence point in the execution ofB prior to the evaluation ofE) modifying P to point to
a copy of the array object into which it formerly pointed would change the value ofE.117)

Note that ‘‘based’’ is defined only for expressions with pointer types.

4 During each execution ofB, let L be any lvalue that has&L based onP. If L is used to
access the value of the objectX that it designates, andX is also modified (by any means),
then the following requirements apply:T shall not be const-qualified. Every other lvalue
used to access the value ofX shall also have its address based onP. Every access that
modifiesX shall be considered also to modifyP, for the purposes of this subclause. IfP
is assigned the value of a pointer expressionE that is based on another restricted pointer
objectP2, associated with blockB2, then either the execution ofB2 shall begin before
the execution ofB, or the execution ofB2 shall end prior to the assignment. If these
requirements are not met, then the behavior is undefined.

5 Here an execution ofB means that portion of the execution of the program that would
correspond to the lifetime of an object with scalar type and automatic storage duration
associated withB.

6 A translator is free to ignore any or all aliasing implications of uses ofrestrict .

7 EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is accessed using one ofa, b, or c , and that object is modified anywhere in the
program, then it is never accessed using either of the other two.

117) In other words,E depends on the value ofP itself rather than on the value of an object referenced
indirectly throughP. For example, if identifierp has type(int **restrict) , then the pointer
expressionsp and p+1 are based on the restricted pointer object designated byp, but the pointer
expressions*p andp[1] are not.

110 Language §6.7.3.1

©ISO/IEC ISO/IEC 9899:1999 (E)

8 EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int * restrict q)
{

while (n-- > 0)
*p++ = *q++;

}

assert that, during each execution of the function, if an object is accessed through one of the pointer
parameters, then it is not also accessed through the other.

9 The benefit of therestrict qualifiers is that they enable a translator to make an effective dependence
analysis of functionf without examining any of the calls off in the program. The cost is that the
programmer has to examine all of those calls to ensure that none give undefined behavior. For example, the
second call off in g has undefined behavior because each ofd[1] throughd[49] is accessed through
bothp andq.

void g(void)
{

extern int d[100];
f(50, d + 50, d); // valid
f(50, d + 1, d); // undefined behavior

}

10 EXAMPLE 3 The function parameter declarations

void h(int n, int * restrict p, int * restrict q, int * restrict r)
{

int i;
for (i = 0; i < n; i++)

p[i] = q[i] + r[i];
}

illustrate how an unmodified object can be aliased through two restricted pointers. In particular, ifa andb
are disjoint arrays, a call of the formh(100, a, b, b) has defined behavior, because arrayb is not
modified within functionh.

11 EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a
function call and an equivalent nested block. With one exception, only ‘‘outer-to-inner’’ assignments
between restricted pointers declared in nested blocks have defined behavior.

{
int * restrict p1;
int * restrict q1;
p1 = q1; // undefined behavior
{

int * restrict p2 = p1; // valid
int * restrict q2 = q1; // valid
p1 = q2; // undefined behavior
p2 = q2; // undefined behavior

}
}

§6.7.3.1 Language 111

ISO/IEC 9899:1999 (E) ©ISO/IEC

12 The one exception allows the value of a restricted pointer to be carried out of the block in which it (or, more
precisely, the ordinary identifier used to designate it) is declared when that block finishes execution. For
example, this permitsnew_vector to return avector .

typedef struct { int n; float * restrict v; } vector;
vector new_vector(int n)
{

vector t;
t.n = n;
t.v = malloc(n * sizeof (float));
return t;

}

6.7.4 Function specifiers
Syntax

1 function-specifier:
inline

Constraints

2 Function specifiers shall be used only in the declaration of an identifier for a function.

3 An inline definition of a function with external linkage shall not contain a definition of a
modifiable object with static storage duration, and shall not contain a reference to an
identifier with internal linkage.

4 In a hosted environment, theinline function specifier shall not appear in a declaration
of main .

Semantics

5 A function declared with aninline function specifier is aninline function. The
function specifier may appear more than once; the behavior is the same as if it appeared
only once. Making a function an inline function suggests that calls to the function be as
fast as possible.118) The extent to which such suggestions are effective is
implementation-defined.119)

6 Any function with internal linkage can be an inline function. For a function with external
linkage, the following restrictions apply: If a function is declared with aninline

118) By using, for example, an alternative to the usual function call mechanism, such as ‘‘inline
substitution’’. Inline substitution is not textual substitution, nor does it create a new function.
Therefore, for example, the expansion of a macro used within the body of the function uses the
definition it had at the point the function body appears, and not where the function is called; and
identifiers refer to the declarations in scope where the body occurs. Likewise, the function has a
single address, regardless of the number of inline definitions that occur in addition to the external
definition.

119) For example, an implementation might never perform inline substitution, or might only perform inline
substitutions to calls in the scope of aninline declaration.

112 Language §6.7.4

©ISO/IEC ISO/IEC 9899:1999 (E)

function specifier, then it shall also be defined in the same translation unit. If all of the
file scope declarations for a function in a translation unit include theinline function
specifier withoutextern , then the definition in that translation unit is aninline
definition. An inline definition does not provide an external definition for the function,
and does not forbid an external definition in another translation unit. An inline definition
provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the
function uses the inline definition or the external definition.120)

7 EXAMPLE The declaration of an inline function with external linkage can result in either an external
definition, or a definition available for use only within the translation unit. A file scope declaration with
extern creates an external definition. The following example shows an entire translation unit.

inline double fahr(double t)
{

return (9.0 * t) / 5.0 + 32.0;
}

inline double cels(double t)
{

return (5.0 * (t - 32.0)) / 9.0;
}

extern double fahr(double); // creates an external definition

double convert(int is_fahr, double temp)
{

/* A translator may perform inline substitutions*/
return is_fahr ? cels(temp) : fahr(temp);

}

8 Note that the definition offahr is an external definition becausefahr is also declared withextern , but
the definition ofcels is an inline definition. Becausecels has external linkage and is referenced, an
external definition has to appear in another translation unit (see 6.9); the inline definition and the external
definition are distinct and either may be used for the call.

Forward references: function definitions (6.9.1).

120) Since an inline definition is distinct from the corresponding external definition and from any other
corresponding inline definitions in other translation units, all corresponding objects with static storage
duration are also distinct in each of the definitions.

§6.7.4 Language 113

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.7.5 Declarators
Syntax

1 declarator:
pointeropt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator[type-qualifier-listopt assignment-expressionopt]
direct-declarator[static type-qualifier-listopt assignment-expression]
direct-declarator[type-qualifier-list static assignment-expression]
direct-declarator[type-qualifier-listopt *]
direct-declarator(parameter-type-list)
direct-declarator(identifier-listopt)

pointer:
* type-qualifier-listopt
* type-qualifier-listopt pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , ...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

identifier-list:
identifier
identifier-list , identifier

Semantics

2 Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with the
scope, storage duration, and type indicated by the declaration specifiers.

3 A full declarator is a declarator that is not part of another declarator. The end of a full
declarator is a sequence point. If the nested sequence of declarators in a full declarator
114 Language §6.7.5

©ISO/IEC ISO/IEC 9899:1999 (E)

contains a variable length array type, the type specified by the full declarator is said to be
variably modified.

4 In the following subclauses, consider a declaration

T D1

whereT contains the declaration specifiers that specify a typeT (such asint) andD1 is
a declarator that contains an identifierident. The type specified for the identifierident in
the various forms of declarator is described inductively using this notation.

5 If, in the declaration ‘‘T D1’’, D1 has the form

identifier

then the type specified forident is T.

6 If, in the declaration ‘‘T D1’’, D1 has the form

(D)

then ident has the type specified by the declaration ‘‘T D’’. Thus, a declarator in
parentheses is identical to the unparenthesized declarator, but the binding of complicated
declarators may be altered by parentheses.

Implementation limits

7 As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and
function declarators that modify an arithmetic, structure, union, or incomplete type, either
directly or via one or moretypedef s.

Forward references: array declarators (6.7.5.2), type definitions (6.7.7).

6.7.5.1 Pointer declarators

Semantics

1 If, in the declaration ‘‘T D1’’, D1 has the form

* type-qualifier-listopt D

and the type specified forident in the declaration ‘‘T D’’ is ‘‘ derived-declarator-type-list
T ’’, then the type specified forident is ‘‘ derived-declarator-type-list type-qualifier-list
pointer toT ’’. For each type qualifier in the list,ident is a so-qualified pointer.

2 For two pointer types to be compatible, both shall be identically qualified and both shall
be pointers to compatible types.

3 EXAMPLE The following pair of declarations demonstrates the difference between a ‘‘variable pointer
to a constant value’’ and a ‘‘constant pointer to a variable value’’.

const int *ptr_to_constant;
int *const constant_ptr;

The contents of any object pointed to byptr_to_constant shall not be modified through that pointer,

§6.7.5.1 Language 115

ISO/IEC 9899:1999 (E) ©ISO/IEC

but ptr_to_constant itself may be changed to point to another object. Similarly, the contents of the
int pointed to byconstant_ptr may be modified, butconstant_ptr itself shall always point to the
same location.

4 The declaration of the constant pointerconstant_ptr may be clarified by including a definition for the
type ‘‘pointer toint ’’.

typedef int *int_ptr;
const int_ptr constant_ptr;

declaresconstant_ptr as an object that has type ‘‘const-qualified pointer toint ’’.

6.7.5.2 Array declarators

Constraints

1 In addition to optional type qualifiers and the keywordstatic , the[and] may delimit
an expression or* . If they delimit an expression (which specifies the size of an array), the
expression shall have an integer type. If the expression is a constant expression, it shall
have a value greater than zero. The element type shall not be an incomplete or function
type. The optional type qualifiers and the keywordstatic shall appear only in a
declaration of a function parameter with an array type, and then only in the outermost
array type derivation.

2 Only an ordinary identifier (as defined in 6.2.3) with both block scope or function
prototype scope and no linkage shall have a variably modified type. If an identifier is
declared to be an object with static storage duration, it shall not have a variable length
array type.

Semantics

3 If, in the declaration ‘‘T D1’’, D1 has one of the forms:

D[type-qualifier-listopt assignment-expressionopt]
D[static type-qualifier-listopt assignment-expression]
D[type-qualifier-list static assignment-expression]
D[type-qualifier-listopt *]

and the type specified forident in the declaration ‘‘T D’’ is ‘‘ derived-declarator-type-list
T ’’, then the type specified forident is ‘‘ derived-declarator-type-listarray of T ’’. 121)

(See 6.7.5.3 for the meaning of the optional type qualifiers and the keywordstatic .)

4 If the size is not present, the array type is an incomplete type. If the size is* instead of
being an expression, the array type is a variable length array type of unspecified size,
which can only be used in declarations with function prototype scope;122) such arrays are
nonetheless complete types. If the size is an integer constant expression and the element

121) When several ‘‘array of’’ specifications are adjacent, a multidimensional array is declared.

122) Thus,* can be used only in function declarations that are not definitions (see 6.7.5.3).

116 Language §6.7.5.2

©ISO/IEC ISO/IEC 9899:1999 (E)

type has a known constant size, the array type is not a variable length array type;
otherwise, the array type is a variable length array type.

5 If the size is an expression that is not an integer constant expression: if it occurs in a
declaration at function prototype scope, it is treated as if it were replaced by* ; otherwise,
each time it is evaluated it shall have a value greater than zero. The size of each instance
of a variable length array type does not change during its lifetime. Where a size
expression is part of the operand of asizeof operator and changing the value of the
size expression would not affect the result of the operator, it is unspecified whether or not
the size expression is evaluated.

6 For two array types to be compatible, both shall have compatible element types, and if
both size specifiers are present, and are integer constant expressions, then both size
specifiers shall have the same constant value. If the two array types are used in a context
which requires them to be compatible, it is undefined behavior if the two size specifiers
evaluate to unequal values.

7 EXAMPLE 1

float fa[11], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers.

8 EXAMPLE 2 Note the distinction between the declarations

extern int *x;
extern int y[];

The first declaresx to be a pointer toint ; the second declaresy to be an array ofint of unspecified size
(an incomplete type), the storage for which is defined elsewhere.

9 EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;
void fcompat(void)
{

int a[n][6][m];
int (*p)[4][n+1];
int c[n][n][6][m];
int (*r)[n][n][n+1];
p = a; // invalid: not compatible because4 != 6
r = c; // compatible, but defined behavior only if

// n == 6 andm == n+1
}

§6.7.5.2 Language 117

ISO/IEC 9899:1999 (E) ©ISO/IEC

10 EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or
function prototype scope. Array objects declared with thestatic or extern storage-class specifier
cannot have a variable length array (VLA) type. However, an object declared with thestatic storage-
class specifier can have a VM type (that is, a pointer to a VLA type). Finally, all identifiers declared with a
VM type have to be ordinary identifiers and cannot, therefore, be members of structures or unions.

extern int n;
int A[n]; // invalid: file scope VLA
extern int (*p2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM

void fvla(int m, int C[m][m]); // valid: VLA with prototype scope

void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{

typedef int VLA[m][m] // valid: block scope typedef VLA

struct tag {
int (*y)[n]; // invalid: y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier

};
int D[m]; // valid: auto VLA
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (*s)[m]; // valid: auto pointer to VLA
extern int (*r)[m]; // invalid: r has linkage and points to VLA
static int (*q)[m] = &B; // valid: q is a static block pointer to VLA

}

Forward references: function declarators (6.7.5.3), function definitions (6.9.1),
initialization (6.7.8).

6.7.5.3 Function declarators (including prototypes)

Constraints

1 A function declarator shall not specify a return type that is a function type or an array
type.

2 The only storage-class specifier that shall occur in a parameter declaration isregister .

3 An identifier list in a function declarator that is not part of a definition of that function
shall be empty.

4 After adjustment, the parameters in a parameter type list in a function declarator that is
part of a definition of that function shall not have incomplete type.

Semantics

5 If, in the declaration ‘‘T D1’’, D1 has the form

D(parameter-type-list)
or

D(identifier-listopt)

118 Language §6.7.5.3

©ISO/IEC ISO/IEC 9899:1999 (E)

and the type specified forident in the declaration ‘‘T D’’ is ‘‘ derived-declarator-type-list
T ’’, then the type specified forident is ‘‘ derived-declarator-type-listfunction returning
T ’’.

6 A parameter type list specifies the types of, and may declare identifiers for, the
parameters of the function.

7 A declaration of a parameter as ‘‘array oftype’’ shall be adjusted to ‘‘qualified pointer to
type’’, where the type qualifiers (if any) are those specified within the[and] of the
array type derivation. If the keywordstatic also appears within the[and] of the
array type derivation, then for each call to the function, the value of the corresponding
actual argument shall provide access to the first element of an array with at least as many
elements as specified by the size expression.

8 A declaration of a parameter as ‘‘function returningtype’’ shall be adjusted to ‘‘pointer to
function returningtype’’, as in 6.3.2.1.

9 If the list terminates with an ellipsis (, ...), no information about the number or types
of the parameters after the comma is supplied.123)

10 The special case of an unnamed parameter of typevoid as the only item in the list
specifies that the function has no parameters.

11 In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter, not as redundant parentheses
around the identifier for a declarator.

12 If the function declarator is not part of a definition of that function, parameters may have
incomplete type and may use the[*] notation in their sequences of declarator specifiers
to specify variable length array types.

13 The storage-class specifier in the declaration specifiers for a parameter declaration, if
present, is ignored unless the declared parameter is one of the members of the parameter
type list for a function definition.

14 An identifier list declares only the identifiers of the parameters of the function. An empty
list in a function declarator that is part of a definition of that function specifies that the
function has no parameters. The empty list in a function declarator that is not part of a
definition of that function specifies that no information about the number or types of the
parameters is supplied.124)

123) The macros defined in the<stdarg.h> header (7.15) may be used to access arguments that
correspond to the ellipsis.

124) See ‘‘future language directions’’ (6.11.6).

§6.7.5.3 Language 119

ISO/IEC 9899:1999 (E) ©ISO/IEC

15 For two function types to be compatible, both shall specify compatible return types.125)

Moreover, the parameter type lists, if both are present, shall agree in the number of
parameters and in use of the ellipsis terminator; corresponding parameters shall have
compatible types. If one type has a parameter type list and the other type is specified by a
function declarator that is not part of a function definition and that contains an empty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the
default argument promotions. If one type has a parameter type list and the other type is
specified by a function definition that contains a (possibly empty) identifier list, both shall
agree in the number of parameters, and the type of each prototype parameter shall be
compatible with the type that results from the application of the default argument
promotions to the type of the corresponding identifier. (In the determination of type
compatibility and of a composite type, each parameter declared with function or array
type is taken as having the adjusted type and each parameter declared with qualified type
is taken as having the unqualified version of its declared type.)

16 EXAMPLE 1 The declaration

int f(void), *fip(), (*pfi)();

declares a functionf with no parameters returning anint , a functionfip with no parameter specification
returning a pointer to anint , and a pointerpfi to a function with no parameter specification returning an
int . It is especially useful to compare the last two. The binding of*fip() is *(fip()) , so that the
declaration suggests, and the same construction in an expression requires, the calling of a functionfip ,
and then using indirection through the pointer result to yield anint . In the declarator(*pfi)() , the
extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returns anint .

17 If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the
declaration occurs inside a function, the identifiers of the functionsf andfip have block scope and either
internal or external linkage (depending on what file scope declarations for these identifiers are visible), and
the identifier of the pointerpfi has block scope and no linkage.

18 EXAMPLE 2 The declaration

int (*apfi[3])(int *x, int *y);

declares an arrayapfi of three pointers to functions returningint . Each of these functions has two
parameters that are pointers toint . The identifiersx andy are declared for descriptive purposes only and
go out of scope at the end of the declaration ofapfi .

19 EXAMPLE 3 The declaration

int (*fpfi(int (*)(long), int))(int, ...);

declares a functionfpfi that returns a pointer to a function returning anint . The functionfpfi has two
parameters: a pointer to a function returning anint (with one parameter of typelong int), and anint .
The pointer returned byfpfi points to a function that has oneint parameter and accepts zero or more
additional arguments of any type.

125) If both function types are ‘‘old style’’, parameter types are not compared.

120 Language §6.7.5.3

©ISO/IEC ISO/IEC 9899:1999 (E)

20 EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main()
{

double b[4][308];
addscalar(4, 2, b, 2.17);
return 0;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (int i = 0; i < n; i++)

for (int j = 0, k = n*m+300; j < k; j++)
// a is a pointer to a VLA withn*m+300 elements
a[i][j] += x;

}

21 EXAMPLE 5 The following are all compatible function prototype declarators.

double maximum(int n, int m, double a[n][m]);
double maximum(int n, int m, double a[*][*]);
double maximum(int n, int m, double a[][*]);
double maximum(int n, int m, double a[][m]);

as are:

void f(double (* restrict a)[5]);
void f(double a[restrict][5]);
void f(double a[restrict 3][5]);
void f(double a[restrict static 3][5]);

(Note that the last declaration also specifies that the argument corresponding toa in any call tof must be a
non-null pointer to the first of at least three arrays of 5 doubles, which the others do not.)

Forward references: function definitions (6.9.1), type names (6.7.6).

§6.7.5.3 Language 121

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.7.6 Type names
Syntax

1 type-name:
specifier-qualifier-list abstract-declaratoropt

abstract-declarator:
pointer
pointeropt direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropt [assignment-expressionopt]
direct-abstract-declaratoropt [*]
direct-abstract-declaratoropt (parameter-type-listopt)

Semantics

2 In several contexts, it is necessary to specify a type. This is accomplished using atype
name, which is syntactically a declaration for a function or an object of that type that
omits the identifier.126)

3 EXAMPLE The constructions

(a) int
(b) int *
(c) int *[3]
(d) int (*)[3]
(e) int (*)[*]
(f) int *()
(g) int (*)(void)
(h) int (*const [])(unsigned int, ...)

name respectively the types (a)int , (b) pointer toint , (c) array of three pointers toint , (d) pointer to an
array of threeint s, (e) pointer to a variable length array of an unspecified number ofint s, (f) function
with no parameter specification returning a pointer toint , (g) pointer to function with no parameters
returning anint , and (h) array of an unspecified number of constant pointers to functions, each with one
parameter that has typeunsigned int and an unspecified number of other parameters, returning an
int .

126) As indicated by the syntax, empty parentheses in a type name are interpreted as ‘‘function with no
parameter specification’’, rather than redundant parentheses around the omitted identifier.

122 Language §6.7.6

©ISO/IEC ISO/IEC 9899:1999 (E)

6.7.7 Type definitions
Syntax

1 typedef-name:
identifier

Constraints

2 If a typedef name specifies a variably modified type then it shall have block scope.

Semantics

3 In a declaration whose storage-class specifier istypedef , each declarator defines an
identifier to be a typedef name that denotes the type specified for the identifier in the way
described in 6.7.5. Any array size expressions associated with variable length array
declarators are evaluated each time the declaration of the typedef name is reached in the
order of execution. Atypedef declaration does not introduce a new type, only a
synonym for the type so specified. That is, in the following declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration
specifiers inT (known asT), and the identifier inD has the type ‘‘derived-declarator-
type-list T’’ where thederived-declarator-type-listis specified by the declarators ofD. A
typedef name shares the same name space as other identifiers declared in ordinary
declarators.

4 EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;
extern KLICKSP *metricp;
range x;
range z, *zp;

are all valid declarations. The type ofdistance is int , that ofmetricp is ‘‘pointer to function with no
parameter specification returningint ’’, and that ofx andz is the specified structure;zp is a pointer to
such a structure. The objectdistance has a type compatible with any otherint object.

5 EXAMPLE 2 After the declarations

typedef struct s1 { int x; } t1, *tp1;
typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to bytp1 are compatible. Typet1 is also compatible with typestruct
s1 , but not compatible with the typesstruct s2 , t2 , the type pointed to bytp2 , or int .

§6.7.7 Language 123

ISO/IEC 9899:1999 (E) ©ISO/IEC

6 EXAMPLE 3 The following obscure constructions

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;
const t:5;
plain r:5;

};

declare a typedef namet with typesigned int , a typedef nameplain with type int , and a structure
with three bit-field members, one namedt that contains values in the range [0, 15], an unnamed const-
qualified bit-field which (if it could be accessed) would contain values in either the range [−15, +15] or
[−16, +15], and one namedr that contains values in one of the ranges [0, 31], [−15, +15], or [−16, +15].
(The choice of range is implementation-defined.) The first two bit-field declarations differ in that
unsigned is a type specifier (which forcest to be the name of a structure member), whileconst is a
type qualifier (which modifiest which is still visible as a typedef name). If these declarations are followed
in an inner scope by

t f(t (t));
long t;

then a functionf is declared with type ‘‘function returningsigned int with one unnamed parameter
with type pointer to function returningsigned int with one unnamed parameter with typesigned
int ’’, and an identifiert with typelong int .

7 EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the
following declarations of thesignal function specify exactly the same type, the first without making use
of any typedef names.

typedef void fv(int), (*pfv)(int);

void (*signal(int, void (*)(int)))(int);
fv *signal(int, fv *);
pfv signal(int, pfv);

8 EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the
time the typedef name is defined, not each time it is used:

void copyt(int n)
{

typedef int B[n]; // B is n ints,n evaluated now
n += 1;
B a; // a is n ints,n without+= 1
int b[n]; // a andb are different sizes
for (int i = 1; i < n; i++)

a[i-1] = b[i];
}

124 Language §6.7.7

©ISO/IEC ISO/IEC 9899:1999 (E)

6.7.8 Initialization
Syntax

1 initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
designationopt initializer
initializer-list , designationopt initializer

designation:
designator-list =

designator-list:
designator
designator-list designator

designator:
[constant-expression]
. identifier

Constraints

2 No initializer shall attempt to provide a value for an object not contained within the entity
being initialized.

3 The type of the entity to be initialized shall be an array of unknown size or an object type
that is not a variable length array type.

4 All the expressions in an initializer for an object that has static storage duration shall be
constant expressions or string literals.

5 If the declaration of an identifier has block scope, and the identifier has external or
internal linkage, the declaration shall have no initializer for the identifier.

6 If a designator has the form

[constant-expression]

then the current object (defined below) shall have array type and the expression shall be
an integer constant expression. If the array is of unknown size, any nonnegative value is
valid.

7 If a designator has the form

. identifier

then the current object (defined below) shall have structure or union type and the
identifier shall be the name of a member of that type.
§6.7.8 Language 125

ISO/IEC 9899:1999 (E) ©ISO/IEC

Semantics

8 An initializer specifies the initial value stored in an object.

9 Except where explicitly stated otherwise, for the purposes of this subclause unnamed
members of objects of structure and union type do not participate in initialization.
Unnamed members of structure objects have indeterminate value even after initialization.

10 If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate. If an object that has static storage duration is not initialized explicitly,
then:

— if it has pointer type, it is initialized to a null pointer;

— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules;

— if it is a union, the first named member is initialized (recursively) according to these
rules.

11 The initializer for a scalar shall be a single expression, optionally enclosed in braces. The
initial value of the object is that of the expression (after conversion); the same type
constraints and conversions as for simple assignment apply, taking the type of the scalar
to be the unqualified version of its declared type.

12 The rest of this subclause deals with initializers for objects that have aggregate or union
type.

13 The initializer for a structure or union object that has automatic storage duration shall be
either an initializer list as described below, or a single expression that has compatible
structure or union type. In the latter case, the initial value of the object, including
unnamed members, is that of the expression.

14 An array of character type may be initialized by a character string literal, optionally
enclosed in braces. Successive characters of the character string literal (including the
terminating null character if there is room or if the array is of unknown size) initialize the
elements of the array.

15 An array with element type compatible withwchar_t may be initialized by a wide
string literal, optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of
unknown size) initialize the elements of the array.

16 Otherwise, the initializer for an object that has aggregate or union type shall be a brace-
enclosed list of initializers for the elements or named members.

17 Each brace-enclosed initializer list has an associatedcurrent object. When no
designations are present, subobjects of the current object are initialized in order according
to the type of the current object: array elements in increasing subscript order, structure

126 Language §6.7.8

©ISO/IEC ISO/IEC 9899:1999 (E)

members in declaration order, and the first named member of a union.127) In contrast, a
designation causes the following initializer to begin initialization of the subobject
described by the designator. Initialization then continues forward in order, beginning
with the next subobject after that described by the designator.128)

18 Each designator list begins its description with the current object associated with the
closest surrounding brace pair. Each item in the designator list (in order) specifies a
particular member of its current object and changes the current object for the next
designator (if any) to be that member.129) The current object that results at the end of the
designator list is the subobject to be initialized by the following initializer.

19 The initialization shall occur in initializer list order, each initializer provided for a
particular subobject overriding any previously listed initializer for the same subobject; all
subobjects that are not initialized explicitly shall be initialized implicitly the same as
objects that have static storage duration.

20 If the aggregate or union contains elements or members that are aggregates or unions,
these rules apply recursively to the subaggregates or contained unions. If the initializer of
a subaggregate or contained union begins with a left brace, the initializers enclosed by
that brace and its matching right brace initialize the elements or members of the
subaggregate or the contained union. Otherwise, only enough initializers from the list are
taken to account for the elements or members of the subaggregate or the first member of
the contained union; any remaining initializers are left to initialize the next element or
member of the aggregate of which the current subaggregate or contained union is a part.

21 If there are fewer initializers in a brace-enclosed list than there are elements or members
of an aggregate, or fewer characters in a string literal used to initialize an array of known
size than there are elements in the array, the remainder of the aggregate shall be
initialized implicitly the same as objects that have static storage duration.

22 If an array of unknown size is initialized, its size is determined by the largest indexed
element with an explicit initializer. At the end of its initializer list, the array no longer
has incomplete type.

127) If the initializer list for a subaggregate or contained union does not begin with a left brace, its
subobjects are initialized as usual, but the subaggregate or contained union does not become the
current object: current objects are associated only with brace-enclosed initializer lists.

128) After a union member is initialized, the next object is not the next member of the union; instead, it is
the next subobject of an object containing the union.

129) Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with
the surrounding brace pair. Note, too, that each separate designator list is independent.

§6.7.8 Language 127

ISO/IEC 9899:1999 (E) ©ISO/IEC

23 The order in which any side effects occur among the initialization list expressions is
unspecified.130)

24 EXAMPLE 1 Provided that<complex.h> has been#include d, the declarations

int i = 3.5;
complex c = 5 + 3 * I;

define and initializei with the value 3 andc with the value5. 0+ 3. 0i .

25 EXAMPLE 2 The declaration

int x[] = { 1, 3, 5 };

defines and initializesx as a one-dimensional array object that has three elements, as no size was specified
and there are three initializers.

26 EXAMPLE 3 The declaration

int y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row ofy (the array object
y[0]), namelyy[0][0] , y[0][1] , and y[0][2] . Likewise the next two lines initializey[1] and
y[2] . The initializer ends early, soy[3] is initialized with zeros. Precisely the same effect could have
been achieved by

int y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer fory[0] does not begin with a left brace, so three items from the list are used. Likewise the
next three are taken successively fory[1] andy[2] .

27 EXAMPLE 4 The declaration

int z[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column ofz as specified and initializes the rest with zeros.

28 EXAMPLE 5 The declaration

struct { int a[3], b; } w[] = { { 1 }, 2 };

is a definition with an inconsistently bracketed initialization. It defines an array with two element
structures:w[0].a[0] is 1 andw[1].a[0] is 2; all the other elements are zero.

130) In particular, the evaluation order need not be the same as the order of subobject initialization.

128 Language §6.7.8

©ISO/IEC ISO/IEC 9899:1999 (E)

29 EXAMPLE 6 The declaration

short q[4][3][2] = {
{ 1 },
{ 2, 3 },
{ 4, 5, 6 }

};

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array
object: q[0][0][0] is 1, q[1][0][0] is 2, q[1][0][1] is 3, and 4, 5, and 6 initialize
q[2][0][0] , q[2][0][1] , andq[2][1][0] , respectively; all the rest are zero. The initializer for
q[0][0] does not begin with a left brace, so up to six items from the current list may be used. There is
only one, so the values for the remaining five elements are initialized with zero. Likewise, the initializers
for q[1][0] andq[2][0] do not begin with a left brace, so each uses up to six items, initializing their
respective two-dimensional subaggregates. If there had been more than six items in any of the lists, a
diagnostic message would have been issued. The same initialization result could have been achieved by:

short q[4][3][2] = {
1, 0, 0, 0, 0, 0,
2, 3, 0, 0, 0, 0,
4, 5, 6

};

or by:

short q[4][3][2] = {
{

{ 1 },
},
{

{ 2, 3 },
},
{

{ 4, 5 },
{ 6 },

}
};

in a fully bracketed form.

30 Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to
cause confusion.

31 EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the
declaration

typedef int A[]; // OK - declared with block scope

the declaration

A a = { 1, 2 }, b = { 3, 4, 5 };

is identical to

int a[] = { 1, 2 }, b[] = { 3, 4, 5 };

due to the rules for incomplete types.

§6.7.8 Language 129

ISO/IEC 9899:1999 (E) ©ISO/IEC

32 EXAMPLE 8 The declaration

char s[] = "abc", t[3] = "abc";

defines ‘‘plain’’ char array objectss and t whose elements are initialized with character string literals.
This declaration is identical to

char s[] = { 'a', 'b', 'c', '\0' },
t[] = { 'a', 'b', 'c' };

The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

definesp with type ‘‘pointer tochar ’’ and initializes it to point to an object with type ‘‘array ofchar ’’
with length 4 whose elements are initialized with a character string literal. If an attempt is made to usep to
modify the contents of the array, the behavior is undefined.

33 EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using
designators:

enum { member_one, member_two };
const char *nm[] = {

[member_two] = "member two",
[member_one] = "member one",

};

34 EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:

div_t answer = { .quot = 2, .rem = -1 };

35 EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists
might be misunderstood:

struct { int a[3], b; } w[] =
{ [0].a = {1}, [1].a[0] = 2 };

36 EXAMPLE 12 Space can be ‘‘allocated’’ from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0

};

37 In the above, ifMAXis greater than ten, there will be some zero-valued elements in the middle; if it is less
than ten, some of the values provided by the first five initializers will be overridden by the second five.

38 EXAMPLE 13 Any member of a union can be initialized:

union { /* ... */ } u = { .any_member = 42 };

Forward references: common definitions<stddef.h> (7.17).

130 Language §6.7.8

©ISO/IEC ISO/IEC 9899:1999 (E)

6.8 Statements and blocks
Syntax

1 statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

2 A statementspecifies an action to be performed. Except as indicated, statements are
executed in sequence.

3 A block allows a set of declarations and statements to be grouped into one syntactic unit.
The initializers of objects that have automatic storage duration, and the variable length
array declarators of ordinary identifiers with block scope, are evaluated and the values are
stored in the objects (including storing an indeterminate value in objects without an
initializer) each time the declaration is reached in the order of execution, as if it were a
statement, and within each declaration in the order that declarators appear.

4 A full expressionis an expression that is not part of another expression or of a declarator.
Each of the following is a full expression: an initializer; the expression in an expression
statement; the controlling expression of a selection statement (if or switch); the
controlling expression of awhile or do statement; each of the (optional) expressions of
a for statement; the (optional) expression in areturn statement. The end of a full
expression is a sequence point.

Forward references: expression and null statements (6.8.3), selection statements
(6.8.4), iteration statements (6.8.5), thereturn statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

1 labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

Constraints

2 A case or default label shall appear only in aswitch statement. Further
constraints on such labels are discussed under theswitch statement.

§6.8.1 Language 131

ISO/IEC 9899:1999 (E) ©ISO/IEC

3 Label names shall be unique within a function.

Semantics

4 Any statement may be preceded by a prefix that declares an identifier as a label name.
Labels in themselves do not alter the flow of control, which continues unimpeded across
them.

Forward references: thegoto statement (6.8.6.1), theswitch statement (6.8.4.2).

6.8.2 Compound statement
Syntax

1 compound-statement:
{ block-item-listopt }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
statement

Semantics

2 A compound statementis a block.

6.8.3 Expression and null statements
Syntax

1 expression-statement:
expressionopt ;

Semantics

2 The expression in an expression statement is evaluated as a void expression for its side
effects.131)

3 A null statement(consisting of just a semicolon) performs no operations.

4 EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void expression by means of
a cast:

int p(int);
/* ... */
(void)p(0);

131) Such as assignments, and function calls which have side effects.

132 Language §6.8.3

©ISO/IEC ISO/IEC 9899:1999 (E)

5 EXAMPLE 2 In the program fragment

char *s;
/* ... */
while (*s++ != '\0')

;

a null statement is used to supply an empty loop body to the iteration statement.

6 EXAMPLE 3 A null statement may also be used to carry a label just before the closing} of a compound
statement.

while (loop1) {
/* ... */
while (loop2) {

/* ... */
if (want_out)

goto end_loop1;
/* ... */

}
/* ... */

end_loop1: ;
}

Forward references: iteration statements (6.8.5).

6.8.4 Selection statements
Syntax

1 selection-statement:
if (expression) statement
if (expression) statementelse statement
switch (expression) statement

Semantics

2 A selection statement selects among a set of statements depending on the value of a
controlling expression.

3 A selection statement is a block whose scope is a strict subset of the scope of its
enclosing block. Each associated substatement is also a block whose scope is a strict
subset of the scope of the selection statement.

6.8.4.1 Theif statement

Constraints

1 The controlling expression of anif statement shall have scalar type.

Semantics

2 In both forms, the first substatement is executed if the expression compares unequal to 0.
In theelse form, the second substatement is executed if the expression compares equal

§6.8.4.1 Language 133

ISO/IEC 9899:1999 (E) ©ISO/IEC

to 0. If the first substatement is reached via a label, the second substatement is not
executed.

3 An else is associated with the lexically nearest precedingif that is allowed by the
syntax.

6.8.4.2 Theswitch statement

Constraints

1 The controlling expression of aswitch statement shall have integer type.

2 If a switch statement has an associatedcase or default label within the scope of an
identifier with a variably modified type, the entireswitch statement shall be within the
scope of that identifier.132)

3 The expression of eachcase label shall be an integer constant expression and no two of
thecase constant expressions in the sameswitch statement shall have the same value
after conversion. There may be at most onedefault label in aswitch statement.
(Any enclosedswitch statement may have adefault label or case constant
expressions with values that duplicatecase constant expressions in the enclosing
switch statement.)

Semantics

4 A switch statement causes control to jump to, into, or past the statement that is the
switch body, depending on the value of a controlling expression, and on the presence of a
default label and the values of anycase labels on or in the switch body. Acase or
default label is accessible only within the closest enclosingswitch statement.

5 The integer promotions are performed on the controlling expression. The constant
expression in eachcase label is converted to the promoted type of the controlling
expression. If a converted value matches that of the promoted controlling expression,
control jumps to the statement following the matchedcase label. Otherwise, if there is
a default label, control jumps to the labeled statement. If no convertedcase constant
expression matches and there is nodefault label, no part of the switch body is
executed.

Implementation limits

6 As discussed in 5.2.4.1, the implementation may limit the number ofcase values in a
switch statement.

132) That is, the declaration either precedes theswitch statement, or it follows the lastcase or
default label associated with theswitch that is in the block containing the declaration.

134 Language §6.8.4.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7 EXAMPLE In the artificial program fragment

switch (expr)
{

int i = 4;
f(i);

case 0:
i = 17;
/* falls through intodefault code */

default:
printf("%d\n", i);

}

the object whose identifier isi exists with automatic storage duration (within the block) but is never
initialized, and thus if the controlling expression has a nonzero value, the call to theprintf function will
access an indeterminate value. Similarly, the call to the functionf cannot be reached.

6.8.5 Iteration statements
Syntax

1 iteration-statement:
while (expression) statement
do statementwhile (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

Constraints

2 The controlling expression of an iteration statement shall have scalar type.

3 The declaration part of afor statement shall only declare identifiers for objects having
storage classauto or register .

Semantics

4 An iteration statement causes a statement called theloop bodyto be executed repeatedly
until the controlling expression compares equal to 0.

5 An iteration statement is a block whose scope is a strict subset of the scope of its
enclosing block. The loop body is also a block whose scope is a strict subset of the scope
of the iteration statement.

§6.8.5 Language 135

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.8.5.1 Thewhile statement

1 The evaluation of the controlling expression takes place before each execution of the loop
body.

6.8.5.2 Thedo statement

1 The evaluation of the controlling expression takes place after each execution of the loop
body.

6.8.5.3 Thefor statement

1 The statement

for (clause-1 ; expression-2; expression-3) statement

behaves as follows: The expressionexpression-2is the controlling expression that is
evaluated before each execution of the loop body. The expressionexpression-3is
evaluated as a void expression after each execution of the loop body. Ifclause-1is a
declaration, the scope of any variables it declares is the remainder of the declaration and
the entire loop, including the other two expressions; it is reached in the order of execution
before the first evaluation of the controlling expression. Ifclause-1is an expression, it is
evaluated as a void expression before the first evaluation of the controlling expression.133)

2 Bothclause-1andexpression-3can be omitted. An omittedexpression-2is replaced by a
nonzero constant.

6.8.6 Jump statements
Syntax

1 jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt ;

Semantics

2 A jump statement causes an unconditional jump to another place.

133) Thus,clause-1specifies initialization for the loop, possibly declaring one or more variables for use in
the loop; the controlling expression,expression-2, specifies an evaluation made before each iteration,
such that execution of the loop continues until the expression compares equal to 0; andexpression-3
specifies an operation (such as incrementing) that is performed after each iteration.

136 Language §6.8.6

©ISO/IEC ISO/IEC 9899:1999 (E)

6.8.6.1 Thegoto statement

Constraints

1 The identifier in agoto statement shall name a label located somewhere in the enclosing
function. Agoto statement shall not jump from outside the scope of an identifier having
a variably modified type to inside the scope of that identifier.

Semantics

2 A goto statement causes an unconditional jump to the statement prefixed by the named
label in the enclosing function.

3 EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The
following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by
continue statements, for example.)

/* ... */
goto first_time;
for (;;) {

// determine next operation
/* ... */
if (need to reinitialize) {

// reinitialize-only code
/* ... */

first_time:
// general initialization code
/* ... */
continue;

}
// handle other operations
/* ... */

}

§6.8.6.1 Language 137

ISO/IEC 9899:1999 (E) ©ISO/IEC

4 EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably
modified types. A jump within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{

double a[n];
a[j] = 4.4;

lab3:
a[j] = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
a[j] = 5.5;

lab4:
a[j] = 6.6;

}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 Thecontinue statement

Constraints

1 A continue statement shall appear only in or as a loop body.

Semantics

2 A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each
of the statements

while (/* ... */) {
/* ... */
continue;
/* ... */

contin: ;
}

do {
/* ... */
continue;
/* ... */

contin: ;
} while (/* ... */);

for (/* ... */) {
/* ... */
continue;
/* ... */

contin: ;
}

unless thecontinue statement shown is in an enclosed iteration statement (in which
case it is interpreted within that statement), it is equivalent togoto contin; .134)

6.8.6.3 Thebreak statement

Constraints

1 A break statement shall appear only in or as a switch body or loop body.

Semantics

2 A break statement terminates execution of the smallest enclosingswitch or iteration
statement.

134) Following thecontin: label is a null statement.

138 Language §6.8.6.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.8.6.4 Thereturn statement

Constraints

1 A return statement with an expression shall not appear in a function whose return type
is void . A return statement without an expression shall only appear in a function
whose return type isvoid .

Semantics

2 A return statement terminates execution of the current function and returns control to
its caller. A function may have any number ofreturn statements.

3 If a return statement with an expression is executed, the value of the expression is
returned to the caller as the value of the function call expression. If the expression has a
type different from the return type of the function in which it appears, the value is
converted as if by assignment to an object having the return type of the function.135)

4 EXAMPLE In:

struct s { double i; } f(void);
union {

struct {
int f1;
struct s f2;

} u1;
struct {

struct s f3;
int f4;

} u2;
} g;

struct s f(void)
{

return g.u1.f2;
}

/* ... */
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using
a function call to fetch the value).

135) Thereturn statement is not an assignment. The overlap restriction of subclause 6.5.16.1 does not
apply to the case of function return.

§6.8.6.4 Language 139

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.9 External definitions
Syntax

1 translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

2 The storage-class specifiersauto and register shall not appear in the declaration
specifiers in an external declaration.

3 There shall be no more than one external definition for each identifier declared with
internal linkage in a translation unit. Moreover, if an identifier declared with internal
linkage is used in an expression (other than as a part of the operand of asizeof
operator whose result is an integer constant), there shall be exactly one external definition
for the identifier in the translation unit.

Semantics

4 As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit,
which consists of a sequence of external declarations. These are described as ‘‘external’’
because they appear outside any function (and hence have file scope). As discussed in
6.7, a declaration that also causes storage to be reserved for an object or a function named
by the identifier is a definition.

5 An external definitionis an external declaration that is also a definition of a function
(other than an inline definition) or an object. If an identifier declared with external
linkage is used in an expression (other than as part of the operand of asizeof operator
whose result is an integer constant), somewhere in the entire program there shall be
exactly one external definition for the identifier; otherwise, there shall be no more than
one.136)

136) Thus, if an identifier declared with external linkage is not used in an expression, there need be no
external definition for it.

140 Language §6.9

©ISO/IEC ISO/IEC 9899:1999 (E)

6.9.1 Function definitions
Syntax

1 function-definition:
declaration-specifiers declarator declaration-listopt compound-statement

declaration-list:
declaration
declaration-list declaration

Constraints

2 The identifier declared in a function definition (which is the name of the function) shall
have a function type, as specified by the declarator portion of the function definition.137)

3 The return type of a function shall bevoid or an object type other than array type.

4 The storage-class specifier, if any, in the declaration specifiers shall be eitherextern or
static .

5 If the declarator includes a parameter type list, the declaration of each parameter shall
include an identifier, except for the special case of a parameter list consisting of a single
parameter of typevoid , in which case there shall not be an identifier. No declaration list
shall follow.

6 If the declarator includes an identifier list, each declaration in the declaration list shall
have at least one declarator, those declarators shall declare only identifiers from the
identifier list, and every identifier in the identifier list shall be declared. An identifier
declared as a typedef name shall not be redeclared as a parameter. The declarations in the
declaration list shall contain no storage-class specifier other thanregister and no
initializations.

137) The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); // typeF is ‘‘function with no parameters
// returning int ’’

F f, g; // f andg both have type compatible withF
F f { /* ... */ } // WRONG: syntax/constraint error
F g() { /* ... */ } // WRONG: declares thatg returns a function
int f(void) { /* ... */ } // RIGHT: f has type compatible withF
int g() { /* ... */ } // RIGHT:g has type compatible withF
F *e(void) { /* ... */ } // e returns a pointer to a function
F *((e))(void) { /* ... */ } // same: parentheses irrelevant
int (*fp)(void); // fp points to a function that has typeF
F *Fp; // Fp points to a function that has typeF

§6.9.1 Language 141

ISO/IEC 9899:1999 (E) ©ISO/IEC

Semantics

7 The declarator in a function definition specifies the name of the function being defined
and the identifiers of its parameters. If the declarator includes a parameter type list, the
list also specifies the types of all the parameters; such a declarator also serves as a
function prototype for later calls to the same function in the same translation unit. If the
declarator includes an identifier list,138) the types of the parameters shall be declared in a
following declaration list. In either case, the type of each parameter is adjusted as
described in 6.7.5.3 for a parameter type list; the resulting type shall be an object type.

8 If a function that accepts a variable number of arguments is defined without a parameter
type list that ends with the ellipsis notation, the behavior is undefined.

9 Each parameter has automatic storage duration. Its identifier is an lvalue, which is in
effect declared at the head of the compound statement that constitutes the function body
(and therefore cannot be redeclared in the function body except in an enclosed block).
The layout of the storage for parameters is unspecified.

10 On entry to the function, the size expressions of each variably modified parameter are
evaluated and the value of each argument expression is converted to the type of the
corresponding parameter as if by assignment. (Array expressions and function
designators as arguments were converted to pointers before the call.)

11 After all parameters have been assigned, the compound statement that constitutes the
body of the function definition is executed.

12 If the} that terminates a function is reached, and the value of the function call is used by
the caller, the behavior is undefined.

13 EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a : b;
}

extern is the storage-class specifier andint is the type specifier;max(int a, int b) is the
function declarator; and

{ return a > b ? a : b; }

is the function body. The following similar definition uses the identifier-list form for the parameter
declarations:

138) See ‘‘future language directions’’ (6.11.7).

142 Language §6.9.1

©ISO/IEC ISO/IEC 9899:1999 (E)

extern int max(a, b)
int a, b;
{

return a > b ? a : b;
}

Hereint a, b; is the declaration list for the parameters. The difference between these two definitions is
that the first form acts as a prototype declaration that forces conversion of the arguments of subsequent calls
to the function, whereas the second form does not.

14 EXAMPLE 2 To pass one function to another, one might say

int f(void);
/* ... */
g(f);

Then the definition ofg might read

void g(int (*funcp)(void))
{

/* ... */
(*funcp)() /* or funcp() ... */

}

or, equivalently,

void g(int func(void))
{

/* ... */
func() /* or (*func)() ... */

}

6.9.2 External object definitions
Semantics

1 If the declaration of an identifier for an object has file scope and an initializer, the
declaration is an external definition for the identifier.

2 A declaration of an identifier for an object that has file scope without an initializer, and
without a storage-class specifier or with the storage-class specifierstatic , constitutes a
tentative definition. If a translation unit contains one or more tentative definitions for an
identifier, and the translation unit contains no external definition for that identifier, then
the behavior is exactly as if the translation unit contains a file scope declaration of that
identifier, with the composite type as of the end of the translation unit, with an initializer
equal to 0.

3 If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type shall not be an incomplete type.

§6.9.2 Language 143

ISO/IEC 9899:1999 (E) ©ISO/IEC

4 EXAMPLE 1

int i1 = 1; // definition, external linkage
static int i2 = 2; // definition, internal linkage
extern int i3 = 3; // definition, external linkage
int i4; // tentative definition, external linkage
static int i5; // tentative definition, internal linkage

int i1; // valid tentative definition, refers to pre vious
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to pre vious
int i4; // valid tentative definition, refers to pre vious
int i5; // 6.2.2 renders undefined, linkage disagreement

extern int i1; // refers to pre vious, whose linkage is external
extern int i2; // refers to pre vious, whose linkage is internal
extern int i3; // refers to pre vious, whose linkage is external
extern int i4; // refers to pre vious, whose linkage is external
extern int i5; // refers to pre vious, whose linkage is internal

5 EXAMPLE 2 If at the end of the translation unit containing

int i[];

the arrayi still has incomplete type, the implicit initializer causes it to have one element, which is set to
zero on program startup.

144 Language §6.9.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10 Preprocessing directives
Syntax

1 preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
if-section
control-line
text-line
non-directive

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

§6.10 Language 145

ISO/IEC 9899:1999 (E) ©ISO/IEC

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt)

replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list, ...)

replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

text-line:
pp-tokensopt new-line

non-directive:
pp-tokens new-line

lparen:
a (character not immediately preceded by white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

Description

2 A preprocessing directive consists of a sequence of preprocessing tokens that begins with
a # preprocessing token that (at the start of translation phase 4) is either the first character
in the source file (optionally after white space containing no new-line characters) or that
follows white space containing at least one new-line character, and is ended by the next
new-line character.139) A new-line character ends the preprocessing directive even if it
occurs within what would otherwise be an invocation of a function-like macro.

139) Thus, preprocessing directives are commonly called ‘‘lines’’. These ‘‘lines’’ hav e no other syntactic
significance, as all white space is equivalent except in certain situations during preprocessing (see the
character string literal creation operator in 6.10.3.2, for example).

146 Language §6.10

©ISO/IEC ISO/IEC 9899:1999 (E)

3 A text line shall not begin with a# preprocessing token. A non-directive shall not begin
with any of the directive names appearing in the syntax.

4 When in a group that is skipped (6.10.1), the directive syntax is relaxed to allow any
sequence of preprocessing tokens to occur between the directive name and the following
new-line character.

Constraints

5 The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducing# preprocessing token through
just before the terminating new-line character) are space and horizontal-tab (including
spaces that have replaced comments or possibly other white-space characters in
translation phase 3).

Semantics

6 The implementation can process and skip sections of source files conditionally, include
other source files, and replace macros. These capabilities are calledpreprocessing,
because conceptually they occur before translation of the resulting translation unit.

7 The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.

8 EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line isnot a preprocessing directive, because it does not
begin with a# at the start of translation phase 4, even though it will do so after the macroEMPTYhas been
replaced.

6.10.1 Conditional inclusion
Constraints

1 The expression that controls conditional inclusion shall be an integer constant expression
except that: it shall not contain a cast; identifiers (including those lexically identical to
keywords) are interpreted as described below;140) and it may contain unary operator
expressions of the form

defined identifier
or

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is

140) Because the controlling constant expression is evaluated during translation phase 4, all identifiers
either are or are not macro names — there simply are no keywords, enumeration constants, etc.

§6.10.1 Language 147

ISO/IEC 9899:1999 (E) ©ISO/IEC

predefined or if it has been the subject of a#define preprocessing directive without an
intervening#undef directive with the same subject identifier), 0 if it is not.

Semantics

2 Preprocessing directives of the forms

if constant-expression new-line groupopt
elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

3 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become
the controlling constant expression are replaced (except for those macro names modified
by the defined unary operator), just as in normal text. If the tokendefined is
generated as a result of this replacement process or use of thedefined unary operator
does not match one of the two specified forms prior to macro replacement, the behavior is
undefined. After all replacements due to macro expansion and thedefined unary
operator have been performed, all remaining identifiers are replaced with the pp-number
0, and then each preprocessing token is converted into a token. The resulting tokens
compose the controlling constant expression which is evaluated according to the rules of
6.6, except that all signed integer types and all unsigned integer types act as if they hav e
the same representation as, respectively, the typesintmax_t anduintmax_t defined
in the header<stdint.h> . This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the
numeric value for these character constants matches the value obtained when an identical
character constant occurs in an expression (other than within a#if or #elif directive)
is implementation-defined.141) Also, whether a single-character character constant may
have a neg ative value is implementation-defined.

4 Preprocessing directives of the forms

ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their
conditions are equivalent to#if defined identifier and #if !defined identifier
respectively.

141) Thus, the constant expression in the following#if directive andif statement is not guaranteed to
evaluate to the same value in these two contexts.

#if 'z' - 'a' == 25

if ('z' - 'a' == 25)

148 Language §6.10.1

©ISO/IEC ISO/IEC 9899:1999 (E)

5 Each directive’s condition is checked in order. If it evaluates to false (zero), the group
that it controls is skipped: directives are processed only through the name that determines
the directive in order to keep track of the level of nested conditionals; the rest of the
directives’ preprocessing tokens are ignored, as are the other preprocessing tokens in the
group. Only the first group whose control condition evaluates to true (nonzero) is
processed. If none of the conditions evaluates to true, and there is a#else directive, the
group controlled by the#else is processed; lacking a#else directive, all the groups
until the#endif are skipped.142)

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest
integer types (7.18.1.5).

6.10.2 Source file inclusion
Constraints

1 A #include directive shall identify a header or source file that can be processed by the
implementation.

Semantics

2 A preprocessing directive of the form

include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by
the specified sequence between the< and> delimiters, and causes the replacement of that
directive by the entire contents of the header. How the places are specified or the header
identified is implementation-defined.

3 A preprocessing directive of the form

include " q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified
by the specified sequence between the" delimiters. The named source file is searched
for in an implementation-defined manner. If this search is not supported, or if the search
fails, the directive is reprocessed as if it read

include < h-char-sequence> new-line

with the identical contained sequence (including> characters, if any) from the original
directive.

142) As indicated by the syntax, a preprocessing token shall not follow a#else or #endif directive
before the terminating new-line character. Howev er, comments may appear anywhere in a source file,
including within a preprocessing directive.

§6.10.2 Language 149

ISO/IEC 9899:1999 (E) ©ISO/IEC

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens afterinclude in the directive are processed just as in normal text. (Each
identifier currently defined as a macro name is replaced by its replacement list of
preprocessing tokens.) The directive resulting after all replacements shall match one of
the two previous forms.143) The method by which a sequence of preprocessing tokens
between a< and a> preprocessing token pair or a pair of" characters is combined into a
single header name preprocessing token is implementation-defined.

5 The implementation shall provide unique mappings for sequences consisting of one or
more letters or digits (as defined in 5.2.1) followed by a period (.) and a single letter.
The first character shall be a letter. The implementation may ignore the distinctions of
alphabetical case and restrict the mapping to eight significant characters before the
period.

6 A #include preprocessing directive may appear in a source file that has been read
because of a#include directive in another file, up to an implementation-defined
nesting limit (see 5.2.4.1).

7 EXAMPLE 1 The most common uses of#include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

8 EXAMPLE 2 This illustrates macro-replaced#include directives:

#if VERSION == 1
#define INCFILE "vers1.h"

#elif VERSION == 2
#define INCFILE "vers2.h" // and so on

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

Forward references: macro replacement (6.10.3).

143) Note that adjacent string literals are not concatenated into a single string literal (see the translation
phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

150 Language §6.10.2

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10.3 Macro replacement
Constraints

1 Tw o replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and white-space separation, where all white-space
separations are considered identical.

2 An identifier currently defined as an object-like macro shall not be redefined by another
#define preprocessing directive unless the second definition is an object-like macro
definition and the two replacement lists are identical. Likewise, an identifier currently
defined as a function-like macro shall not be redefined by another#define
preprocessing directive unless the second definition is a function-like macro definition
that has the same number and spelling of parameters, and the two replacement lists are
identical.

3 There shall be white-space between the identifier and the replacement list in the definition
of an object-like macro.

4 If the identifier-list in the macro definition does not end with an ellipsis, the number of
arguments (including those arguments consisting of no preprocessing tokens) in an
invocation of a function-like macro shall equal the number of parameters in the macro
definition. Otherwise, there shall be more arguments in the invocation than there are
parameters in the macro definition (excluding the...). There shall exist a)
preprocessing token that terminates the invocation.

5 The identifier_ _VA_ARGS_ _ shall occur only in the replacement-list of a function-like
macro that uses the ellipsis notation in the arguments.

6 A parameter identifier in a function-like macro shall be uniquely declared within its
scope.

Semantics

7 The identifier immediately following thedefine is called themacro name. There is one
name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list
for either form of macro.

8 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which
a preprocessing directive could begin, the identifier is not subject to macro replacement.

9 A preprocessing directive of the form

define identifier replacement-list new-line

§6.10.3 Language 151

ISO/IEC 9899:1999 (E) ©ISO/IEC

defines anobject-like macrothat causes each subsequent instance of the macro name144)

to be replaced by the replacement list of preprocessing tokens that constitute the
remainder of the directive.

10 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list, ...) replacement-list new-line

defines afunction-like macrowith arguments, similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminates the#define
preprocessing directive. Each subsequent instance of the function-like macro name
followed by a(as the next preprocessing token introduces the sequence of preprocessing
tokens that is replaced by the replacement list in the definition (an invocation of the
macro). The replaced sequence of preprocessing tokens is terminated by the matching)
preprocessing token, skipping intervening matched pairs of left and right parenthesis
preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space
character.

11 The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within
the list are separated by comma preprocessing tokens, but comma preprocessing tokens
between matching inner parentheses do not separate arguments. If there are sequences of
preprocessing tokens within the list of arguments that would otherwise act as
preprocessing directives, the behavior is undefined.

12 If there is a... in the identifier-list in the macro definition, then the trailing arguments,
including any separating comma preprocessing tokens, are merged to form a single item:
the variable arguments. The number of arguments so combined is such that, following
merger, the number of arguments is one more than the number of parameters in the macro
definition (excluding the...).

144) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens,
not sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they
are never scanned for macro names or parameters.

152 Language §6.10.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded
by a# or ## preprocessing token or followed by a## preprocessing token (see below), is
replaced by the corresponding argument after all macros contained therein have been
expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the preprocessing file; no other
preprocessing tokens are available.

2 An identifier_ _VA_ARGS_ _ that occurs in the replacement list shall be treated as if it
were a parameter, and the variable arguments shall form the preprocessing tokens used to
replace it.

6.10.3.2 The# operator

Constraints

1 Each# preprocessing token in the replacement list for a function-like macro shall be
followed by a parameter as the next preprocessing token in the replacement list.

Semantics

2 If, in the replacement list, a parameter is immediately preceded by a# preprocessing
token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing tokens
becomes a single space character in the character string literal. White space before the
first preprocessing token and after the last preprocessing token composing the argument
is deleted. Otherwise, the original spelling of each preprocessing token in the argument
is retained in the character string literal, except for special handling for producing the
spelling of string literals and character constants: a\ character is inserted before each"
and \ character of a character constant or string literal (including the delimiting"
characters), except that it is implementation-defined whether a\ character is inserted
before the\ character beginning a universal character name. If the replacement that
results is not a valid character string literal, the behavior is undefined. The character
string literal corresponding to an empty argument is"" . The order of evaluation of# and
operators is unspecified.

§6.10.3.2 Language 153

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.10.3.3 The## operator

Constraints

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement
list for either form of macro definition.

Semantics

2 If, in the replacement list of a function-like macro, a parameter is immediately preceded
or followed by a## preprocessing token, the parameter is replaced by the corresponding
argument’s preprocessing token sequence; however, if an argument consists of no
preprocessing tokens, the parameter is replaced by aplacemarkerpreprocessing token
instead.145)

3 For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instance of a## preprocessing token
in the replacement list (not from an argument) is deleted and the preceding preprocessing
token is concatenated with the following preprocessing token. Placemarker
preprocessing tokens are handled specially: concatenation of two placemarkers results in
a single placemarker preprocessing token, and concatenation of a placemarker with a
non-placemarker preprocessing token results in the non-placemarker preprocessing token.
If the result is not a valid preprocessing token, the behavior is undefined. The resulting
token is available for further macro replacement. The order of evaluation of## operators
is unspecified.

4 EXAMPLE In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char p[] = "x ## y";

The expansion produces, at various stages:

join(x, y)

in_between(x hash_hash y)

in_between(x ## y)

mkstr(x ## y)

"x ## y"

In other words, expandinghash_hash produces a new token, consisting of two adjacent sharp signs, but
this new token is not the## operator.

145) Placemarker preprocessing tokens do not appear in the syntax because they are temporary entities that
exist only within translation phase 4.

154 Language §6.10.3.3

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted and# and ##
processing has taken place, all placemarker preprocessing tokens are removed. Then, the
resulting preprocessing token sequence is rescanned, along with all subsequent
preprocessing tokens of the source file, for more macro names to replace.

2 If the name of the macro being replaced is found during this scan of the replacement list
(not including the rest of the source file’s preprocessing tokens), it is not replaced.
Furthermore, if any nested replacements encounter the name of the macro being replaced,
it is not replaced. These nonreplaced macro name preprocessing tokens are no longer
available for further replacement even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed
as a preprocessing directive even if it resembles one, but all pragma unary operator
expressions within it are then processed as specified in 6.10.9 below.

6.10.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding#undef
directive is encountered or (if none is encountered) until the end of the preprocessing
translation unit. Macro definitions have no significance after translation phase 4.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if
the specified identifier is not currently defined as a macro name.

3 EXAMPLE 1 The simplest use of this facility is to define a ‘‘manifest constant’’, as in

#define TABSIZE 100

int table[TABSIZE];

4 EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments.
It has the advantages of working for any compatible types of the arguments and of generating in-line code
without the overhead of function calling. It has the disadvantages of evaluating one or the other of its
arguments a second time (including side effects) and generating more code than a function if invoked
several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

§6.10.3.5 Language 155

ISO/IEC 9899:1999 (E) ©ISO/IEC

5 EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(˜
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)ˆm(m);
p() i[q()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (˜ 5)) & f(2 * (0,1))ˆm(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

6 EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n // from previous#include example
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", '\4') // this goes away

== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

156 Language §6.10.3.5

©ISO/IEC ISO/IEC 9899:1999 (E)

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs(

"strncmp(\"abc\\0d\", \"abc\", '\\4') == 0" ": @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs(

"strncmp(\"abc\\0d\", \"abc\", '\\4') == 0: @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the# and## tokens in the macro definition is optional.

7 EXAMPLE 5 To illustrate the rules for placemarker preprocessing tokens, the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[] = { 123, 45, 67, 89,
10, 11, 12, };

8 EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space*/ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* note the white space*/ \

a /* other stuff on this line
*/)

But the following redefinitions are invalid:

#define OBJ_LIKE (0) // different token sequence
#define OBJ_LIKE (1 - 1) // different white space
#define FUNC_LIKE(b) (a) // different parameter usage
#define FUNC_LIKE(b) (b) // different parameter spelling

9 EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, _ _VA_ARGS_ _)
#define showlist(...) puts(#_ _VA_ARGS_ _)
#define report(test, ...) ((test)?puts(#test):\

printf(_ _VA_ARGS_ _))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

§6.10.3.5 Language 157

ISO/IEC 9899:1999 (E) ©ISO/IEC

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):

printf("x is %d but y is %d", x, y));

6.10.4 Line control
Constraints

1 The string literal of a#line directive, if present, shall be a character string literal.

Semantics

2 The line numberof the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (5.1.1.2) while processing the source
file to the current token.

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as
a decimal integer). The digit sequence shall not specify zero, nor a number greater than
2147483647.

4 A preprocessing directive of the form

line digit-sequence" s-char-sequenceopt" new-line

sets the presumed line number similarly and changes the presumed name of the source
file to be the contents of the character string literal.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens afterline on the directive are processed just as in normal text (each identifier
currently defined as a macro name is replaced by its replacement list of preprocessing
tokens). The directive resulting after all replacements shall match one of the two
previous forms and is then processed as appropriate.

158 Language §6.10.4

©ISO/IEC ISO/IEC 9899:1999 (E)

6.10.5 Error directive
Semantics

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified
sequence of preprocessing tokens.

6.10.6 Pragma directive
Semantics

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

where the preprocessing tokenSTDC does not immediately followpragma in the
directive (prior to any macro replacement)146) causes the implementation to behave in an
implementation-defined manner. The behavior might cause translation to fail or cause the
translator or the resulting program to behave in a non-conforming manner. Any such
pragma that is not recognized by the implementation is ignored.

2 If the preprocessing tokenSTDCdoes immediately followpragma in the directive (prior
to any macro replacement), then no macro replacement is performed on the directive, and
the directive shall have one of the following forms147) whose meanings are described
elsewhere:

#pragma STDC FP_CONTRACT on-off-switch
#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC CX_LIMITED_RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

Forward references: theFP_CONTRACTpragma (7.12.2), theFENV_ACCESSpragma
(7.6.1), theCX_LIMITED_RANGEpragma (7.3.4).

146) An implementation is not required to perform macro replacement in pragmas, but it is permitted
except for in standard pragmas (whereSTDCimmediately followspragma). If the result of macro
replacement in a non-standard pragma has the same form as a standard pragma, the behavior is still
implementation-defined; an implementation is permitted to behave as if it were the standard pragma,
but is not required to.

147) See ‘‘future language directions’’ (6.11.8).

§6.10.6 Language 159

ISO/IEC 9899:1999 (E) ©ISO/IEC

6.10.7 Null directive
Semantics

1 A preprocessing directive of the form

new-line

has no effect.

6.10.8 Predefined macro names

1 The following macro names148) shall be defined by the implementation:

_ _DATE_ _ The date of translation of the preprocessing translation unit: a character
string literal of the form"Mmm dd yyyy" , where the names of the
months are the same as those generated by theasctime function, and the
first character ofdd is a space character if the value is less than 10. If the
date of translation is not available, an implementation-defined valid date
shall be supplied.

_ _FILE_ _ The presumed name of the current source file (a character string literal).149)

_ _LINE_ _ The presumed line number (within the current source file) of the current
source line (an integer constant).149)

_ _STDC_ _ The integer constant1, intended to indicate a conforming implementation.

_ _STDC_HOSTED_ _ The integer constant1 if the implementation is a hosted
implementation or the integer constant0 if it is not.

_ _STDC_VERSION_ _ The integer constant199901L .150)

_ _TIME_ _ The time of translation of the preprocessing translation unit: a character
string literal of the form"hh:mm:ss" as in the time generated by the
asctime function. If the time of translation is not available, an
implementation-defined valid time shall be supplied.

2 The following macro names are conditionally defined by the implementation:

_ _STDC_IEC_559_ _ The integer constant1, intended to indicate conformance to the
specifications in annex F (IEC 60559 floating-point arithmetic).

148) See ‘‘future language directions’’ (6.11.9).

149) The presumed source file name and line number can be changed by the#line directive.

150) This macro was not specified in ISO/IEC 9899:1990 and was specified as199409L in
ISO/IEC 9899/AMD1:1995. The intention is that this will remain an integer constant of typelong
int that is increased with each revision of this International Standard.

160 Language §6.10.8

©ISO/IEC ISO/IEC 9899:1999 (E)

_ _STDC_IEC_559_COMPLEX_ _ The integer constant1, intended to indicate
adherence to the specifications in informative annex G (IEC 60559
compatible complex arithmetic).

_ _STDC_ISO_10646_ _ An integer constant of the formyyyymmL (for example,
199712L), intended to indicate that values of typewchar_t are the
coded representations of the characters defined by ISO/IEC 10646, along
with all amendments and technical corrigenda as of the specified year and
month.

3 The values of the predefined macros (except for_ _FILE_ _ and_ _LINE_ _) remain
constant throughout the translation unit.

4 None of these macro names, nor the identifierdefined , shall be the subject of a
#define or a #undef preprocessing directive. Any other predefined macro names
shall begin with a leading underscore followed by an uppercase letter or a second
underscore.

5 The implementation shall not predefine the macro_ _cplusplus , nor shall it define it
in any standard header.

Forward references: theasctime function (7.23.3.1), standard headers (7.1.2).

6.10.9 Pragma operator
Semantics

1 A unary operator expression of the form:

_Pragma (string-literal)

is processed as follows: The string literal isdestringizedby deleting theL prefix, if
present, deleting the leading and trailing double-quotes, replacing each escape sequence
\" by a double-quote, and replacing each escape sequence\\ by a single backslash. The
resulting sequence of characters is processed through translation phase 3 to produce
preprocessing tokens that are executed as if they were thepp-tokensin a pragma
directive. The original four preprocessing tokens in the unary operator expression are
removed.

2 EXAMPLE A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro
replacement, as in:

§6.10.9 Language 161

ISO/IEC 9899:1999 (E) ©ISO/IEC

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING (..\listing.dir)

162 Language §6.10.9

©ISO/IEC ISO/IEC 9899:1999 (E)

6.11 Future language directions

6.11.1 Floating types

1 Future standardization may include additional floating-point types, including those with
greater range, precision, or both thanlong double .

6.11.2 Linkages of identifiers

1 Declaring an identifier with internal linkage at file scope without thestatic storage-
class specifier is an obsolescent feature.

6.11.3 External names

1 Restriction of the significance of an external name to fewer than 255 characters
(considering each universal character name or extended source character as a single
character) is an obsolescent feature that is a concession to existing implementations.

6.11.4 Character escape sequences

1 Lowercase letters as escape sequences are reserved for future standardization. Other
characters may be used in extensions.

6.11.5 Storage-class specifiers

1 The placement of a storage-class specifier other than at the beginning of the declaration
specifiers in a declaration is an obsolescent feature.

6.11.6 Function declarators

1 The use of function declarators with empty parentheses (not prototype-format parameter
type declarators) is an obsolescent feature.

6.11.7 Function definitions

1 The use of function definitions with separate parameter identifier and declaration lists
(not prototype-format parameter type and identifier declarators) is an obsolescent feature.

6.11.8 Pragma directives

1 Pragmas whose first preprocessing token isSTDCare reserved for future standardization.

6.11.9 Predefined macro names

1 Macro names beginning with_ _STDC_are reserved for future standardization.

§6.11.9 Language 163

ISO/IEC 9899:1999 (E) ©ISO/IEC

7. Library

7.1 Introduction

7.1.1 Definitions of terms

1 A string is a contiguous sequence of characters terminated by and including the first null
character. The termmultibyte stringis sometimes used instead to emphasize special
processing given to multibyte characters contained in the string or to avoid confusion
with a wide string. Apointer to a stringis a pointer to its initial (lowest addressed)
character. Thelength of a stringis the number of bytes preceding the null character and
thevalue of a stringis the sequence of the values of the contained characters, in order.

2 Thedecimal-point characteris the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of
such character sequences.151) It is represented in the text and examples by a period, but
may be changed by thesetlocale function.

3 A null wide characteris a wide character with code value zero.

4 A wide stringis a contiguous sequence of wide characters terminated by and including
the first null wide character. Apointer to a wide stringis a pointer to its initial (lowest
addressed) wide character. Thelength of a wide stringis the number of wide characters
preceding the null wide character and thevalue of a wide stringis the sequence of code
values of the contained wide characters, in order.

5 A shift sequenceis a contiguous sequence of bytes within a multibyte string that
(potentially) causes a change in shift state (see 5.2.1.2). A shift sequence shall not have a
corresponding wide character; it is instead taken to be an adjunct to an adjacent multibyte
character.152)

Forward references: character handling (7.4), thesetlocale function (7.11.1.1).

151) The functions that make use of the decimal-point character are the numeric conversion functions
(7.20.1, 7.24.4.1) and the formatted input/output functions (7.19.6, 7.24.2).

152) For state-dependent encodings, the values forMB_CUR_MAXandMB_LEN_MAXshall thus be large
enough to count all the bytes in any complete multibyte character plus at least one adjacent shift
sequence of maximum length. Whether these counts provide for more than one shift sequence is the
implementation’s choice.

164 Library §7.1.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.1.2 Standard headers

1 Each library function is declared, with a type that includes a prototype, in aheader,153)

whose contents are made available by the#include preprocessing directive. The
header declares a set of related functions, plus any necessary types and additional macros
needed to facilitate their use. Declarations of types described in this clause shall not
include type qualifiers, unless explicitly stated otherwise.

2 The standard headers are

<assert.h>
<complex.h>
<ctype.h>
<errno.h>
<fenv.h>
<float.h>

<inttypes.h>
<iso646.h>
<limits.h>
<locale.h>
<math.h>
<setjmp.h>

<signal.h>
<stdarg.h>
<stdbool.h>
<stddef.h>
<stdint.h>
<stdio.h>

<stdlib.h>
<string.h>
<tgmath.h>
<time.h>
<wchar.h>
<wctype.h>

3 If a file with the same name as one of the above< and > delimited sequences, not
provided as part of the implementation, is placed in any of the standard places that are
searched for included source files, the behavior is undefined.

4 Standard headers may be included in any order; each may be included more than once in
a giv en scope, with no effect different from being included only once, except that the
effect of including<assert.h> depends on the definition ofNDEBUG(see 7.2). If
used, a header shall be included outside of any external declaration or definition, and it
shall first be included before the first reference to any of the functions or objects it
declares, or to any of the types or macros it defines. However, if an identifier is declared
or defined in more than one header, the second and subsequent associated headers may be
included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the
inclusion.

5 Any definition of an object-like macro described in this clause shall expand to code that is
fully protected by parentheses where necessary, so that it groups in an arbitrary
expression as if it were a single identifier.

6 Any declaration of a library function shall have external linkage.

7 A summary of the contents of the standard headers is given in annex B.

Forward references: diagnostics (7.2).

153) A header is not necessarily a source file, nor are the< and> delimited sequences in header names
necessarily valid source file names.

§7.1.2 Library 165

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.1.3 Reserved identifiers

1 Each header declares or defines all identifiers listed in its associated subclause, and
optionally declares or defines identifiers listed in its associated future library directions
subclause and identifiers which are always reserved either for any use or for use as file
scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use.

— All identifiers that begin with an underscore are always reserved for use as identifiers
with file scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library
directions) is reserved for use as specified if any of its associated headers is included;
unless explicitly stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the
future library directions) are always reserved for use as identifiers with external
linkage.154)

— Each identifier with file scope listed in any of the following subclauses (including the
future library directions) is reserved for use as a macro name and as an identifier with
file scope in the same name space if any of its associated headers is included.

2 No other identifiers are reserved. If the program declares or defines an identifier in a
context in which it is reserved (other than as allowed by 7.1.4), or defines a reserved
identifier as a macro name, the behavior is undefined.

3 If the program removes (with#undef) any macro definition of an identifier in the first
group listed above, the behavior is undefined.

7.1.4 Use of library functions

1 Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow: If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program,
or a null pointer, or a pointer to non-modifiable storage when the corresponding
parameter is not const-qualified) or a type (after promotion) not expected by a function
with variable number of arguments, the behavior is undefined. If a function argument is
described as being an array, the pointer actually passed to the function shall have a value
such that all address computations and accesses to objects (that would be valid if the
pointer did point to the first element of such an array) are in fact valid. Any function
declared in a header may be additionally implemented as a function-like macro defined in

154) The list of reserved identifiers with external linkage includeserrno , setjmp , andva_end .

166 Library §7.1.4

©ISO/IEC ISO/IEC 9899:1999 (E)

the header, so if a library function is declared explicitly when its header is included, one
of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic
reason, it is permitted to take the address of a library function even if it is also defined as
a macro.155) The use of#undef to remove any macro definition will also ensure that an
actual function is referred to. Any inv ocation of a library function that is implemented as
a macro shall expand to code that evaluates each of its arguments exactly once, fully
protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as arguments.156) Likewise, those function-like macros described in the
following subclauses may be invoked in an expression anywhere a function with a
compatible return type could be called.157) All object-like macros listed as expanding to
integer constant expressions shall additionally be suitable for use in#if preprocessing
directives.

2 Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function and use it without including its
associated header.

3 There is a sequence point immediately before a library function returns.

4 The functions in the standard library are not guaranteed to be reentrant and may modify
objects with static storage duration.158)

155) This means that an implementation shall provide an actual function for each library function, even if it
also provides a macro for that function.

156) Such macros might not contain the sequence points that the corresponding function calls do.

157) Because external identifiers and some macro names beginning with an underscore are reserved,
implementations may provide special semantics for such names. For example, the identifier
_BUILTIN_abs could be used to indicate generation of in-line code for theabs function. Thus, the
appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.

In this manner, a user desiring to guarantee that a given library function such asabs will be a genuine
function may write

#undef abs

whether the implementation’s header provides a macro implementation ofabs or a built-in
implementation. The prototype for the function, which precedes and is hidden by any macro
definition, is thereby revealed also.

158) Thus, a signal handler cannot, in general, call standard library functions.

§7.1.4 Library 167

ISO/IEC 9899:1999 (E) ©ISO/IEC

5 EXAMPLE The functionatoi may be used in any of sev eral ways:

— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char *str;
/* ... */
i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;
/* ... */
i = atoi(str);

or
#include <stdlib.h>
const char *str;
/* ... */
i = (atoi)(str);

— by explicit declaration

extern int atoi(const char *);
const char *str;
/* ... */
i = atoi(str);

168 Library §7.1.4

©ISO/IEC ISO/IEC 9899:1999 (E)

7.2 Diagnostics<assert.h>

1 The header<assert.h> defines theassert macro and refers to another macro,

NDEBUG

which is not defined by<assert.h> . If NDEBUGis defined as a macro name at the
point in the source file where<assert.h> is included, theassert macro is defined
simply as

#define assert(ignore) ((void)0)

Theassert macro is redefined according to the current state ofNDEBUGeach time that
<assert.h> is included.

2 Theassert macro shall be implemented as a macro, not as an actual function. If the
macro definition is suppressed in order to access an actual function, the behavior is
undefined.

7.2.1 Program diagnostics

7.2.1.1 Theassert macro

Synopsis

1 #include <assert.h>
void assert(scalar expression);

Description

2 Theassert macro puts diagnostic tests into programs; it expands to a void expression.
When it is executed, ifexpression (which shall have a scalar type) is false (that is,
compares equal to 0), theassert macro writes information about the particular call that
failed (including the text of the argument, the name of the source file, the source line
number, and the name of the enclosing function — the latter are respectively the values of
the preprocessing macros_ _FILE_ _ and _ _LINE_ _ and of the identifier
_ _func_ _) on the standard error stream in an implementation-defined format.159) It
then calls theabort function.

Returns

3 Theassert macro returns no value.

Forward references: theabort function (7.20.4.1).

159) The message written might be of the form:

Assertion failed: expression, function abc, file xyz, line nnn.

§7.2.1.1 Library 169

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.3 Complex arithmetic<complex.h>

7.3.1 Introduction

1 The header<complex.h> defines macros and declares functions that support complex
arithmetic.160) Each synopsis specifies a family of functions consisting of a principal
function with one or moredouble complex parameters and adouble complex or
double return value; and other functions with the same name but withf and l suffixes
which are corresponding functions withfloat and long double parameters and
return values.

2 The macro

complex

expands to_Complex ; the macro

_Complex_I

expands to a constant expression of typeconst float _Complex , with the value of
the imaginary unit.161)

3 The macros

imaginary

and

_Imaginary_I

are defined if and only if the implementation supports imaginary types;162) if defined,
they expand to_Imaginary and a constant expression of typeconst float
_Imaginary with the value of the imaginary unit.

4 The macro

I

expands to either_Imaginary_I or _Complex_I . If _Imaginary_I is not
defined,I shall expand to_Complex_I .

5 Notwithstanding the provisions of 7.1.3, a program may undefine and perhaps then
redefine the macroscomplex , imaginary , andI .

Forward references: IEC 60559-compatible complex arithmetic (annex G).

160) See ‘‘future library directions’’ (7.26.1).

161)The imaginary unit is a numberi such thati2 = −1.

162) A specification for imaginary types is in informative annex G.

170 Library §7.3.1

©ISO/IEC ISO/IEC 9899:1999 (E)

7.3.2 Conventions

1 Values are interpreted as radians, not degrees. An implementation may seterrno but is
not required to.

7.3.3 Branch cuts

1 Some of the functions below hav e branch cuts, across which the function is
discontinuous. For implementations with a signed zero (including all IEC 60559
implementations) that follow the specifications of annex G, the sign of zero distinguishes
one side of a cut from another so the function is continuous (except for format
limitations) as the cut is approached from either side. For example, for the square root
function, which has a branch cut along the negative real axis, the top of the cut, with
imaginary part +0, maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part −0, maps to the negative imaginary axis.

2 Implementations that do not support a signed zero (see annex F) cannot distinguish the
sides of branch cuts. These implementations shall map a cut so the function is continuous
as the cut is approached coming around the finite endpoint of the cut in a counter
clockwise direction. (Branch cuts for the functions specified here have just one finite
endpoint.) For example, for the square root function, coming counter clockwise around
the finite endpoint of the cut along the negative real axis approaches the cut from above,
so the cut maps to the positive imaginary axis.

7.3.4 TheCX_LIMITED_RANGEpragma
Synopsis

1 #include <complex.h>
#pragma STDC CX_LIMITED_RANGE on-off-switch

Description

2 The usual mathematical formulas for complex multiply, divide, and absolute value are
problematic because of their treatment of infinities and because of undue overflow and
underflow. The CX_LIMITED_RANGE pragma can be used to inform the
implementation that (where the state is ‘‘on’’) the usual mathematical formulas are
acceptable.163) The pragma can occur either outside external declarations or preceding all
explicit declarations and statements inside a compound statement. When outside external

163) The purpose of the pragma is to allow the implementation to use the formulas:

(x + iy) × (u + iv) = (xu − yv) + i(yu + xv)

(x + iy)/(u + iv) = [(xu + yv) + i(yu − xv)]/(u2 + v2)

| x + iy | = √ x2 + y2

where the programmer can determine they are safe.

§7.3.4 Library 171

ISO/IEC 9899:1999 (E) ©ISO/IEC

declarations, the pragma takes effect from its occurrence until another
CX_LIMITED_RANGEpragma is encountered, or until the end of the translation unit.
When inside a compound statement, the pragma takes effect from its occurrence until
another CX_LIMITED_RANGE pragma is encountered (including within a nested
compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the
compound statement. If this pragma is used in any other context, the behavior is
undefined. The default state for the pragma is ‘‘off’’.

7.3.5 Trigonometric functions

7.3.5.1 Thecacos functions

Synopsis

1 #include <complex.h>
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

Description

2 Thecacos functions compute the complex arc cosine ofz , with branch cuts outside the
interval [−1,+1] along the real axis.

Returns

3 The cacos functions return the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0,π] along the
real axis.

7.3.5.2 Thecasin functions

Synopsis

1 #include <complex.h>
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

Description

2 Thecasin functions compute the complex arc sine ofz , with branch cuts outside the
interval [−1,+1] along the real axis.

Returns

3 The casin functions return the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [−π /2,+π /2]
along the real axis.

172 Library §7.3.5.2

©ISO/IEC ISO/IEC 9899:1999 (E)

7.3.5.3 Thecatan functions

Synopsis

1 #include <complex.h>
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

Description

2 Thecatan functions compute the complex arc tangent ofz , with branch cuts outside the
interval [−i , +i] along the imaginary axis.

Returns

3 The catan functions return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [−π /2,+π /2]
along the real axis.

7.3.5.4 Theccos functions

Synopsis

1 #include <complex.h>
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

Description

2 Theccos functions compute the complex cosine ofz .

Returns

3 Theccos functions return the complex cosine value.

7.3.5.5 Thecsin functions

Synopsis

1 #include <complex.h>
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

Description

2 Thecsin functions compute the complex sine ofz .

Returns

3 Thecsin functions return the complex sine value.

§7.3.5.5 Library 173

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.3.5.6 Thectan functions

Synopsis

1 #include <complex.h>
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

Description

2 Thectan functions compute the complex tangent ofz .

Returns

3 Thectan functions return the complex tangent value.

7.3.6 Hyperbolic functions

7.3.6.1 Thecacosh functions

Synopsis

1 #include <complex.h>
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

Description

2 Thecacosh functions compute the complex arc hyperbolic cosine ofz , with a branch
cut at values less than 1 along the real axis.

Returns

3 Thecacosh functions return the complex arc hyperbolic cosine value, in the range of a
half-strip of non-negative values along the real axis and in the interval [−iπ , +iπ] along
the imaginary axis.

7.3.6.2 Thecasinh functions

Synopsis

1 #include <complex.h>
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

Description

2 Thecasinh functions compute the complex arc hyperbolic sine ofz , with branch cuts
outside the interval [−i , +i] along the imaginary axis.

174 Library §7.3.6.2

©ISO/IEC ISO/IEC 9899:1999 (E)

Returns

3 The casinh functions return the complex arc hyperbolic sine value, in the range of a
strip mathematically unbounded along the real axis and in the interval [−iπ /2,+iπ /2]
along the imaginary axis.

7.3.6.3 Thecatanh functions

Synopsis

1 #include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

Description

2 The catanh functions compute the complex arc hyperbolic tangent ofz , with branch
cuts outside the interval [−1,+1] along the real axis.

Returns

3 Thecatanh functions return the complex arc hyperbolic tangent value, in the range of a
strip mathematically unbounded along the real axis and in the interval [−iπ /2,+iπ /2]
along the imaginary axis.

7.3.6.4 Theccosh functions

Synopsis

1 #include <complex.h>
double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

Description

2 Theccosh functions compute the complex hyperbolic cosine ofz .

Returns

3 Theccosh functions return the complex hyperbolic cosine value.

7.3.6.5 Thecsinh functions

Synopsis

1 #include <complex.h>
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

§7.3.6.5 Library 175

ISO/IEC 9899:1999 (E) ©ISO/IEC

Description

2 Thecsinh functions compute the complex hyperbolic sine ofz .

Returns

3 Thecsinh functions return the complex hyperbolic sine value.

7.3.6.6 Thectanh functions

Synopsis

1 #include <complex.h>
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

Description

2 Thectanh functions compute the complex hyperbolic tangent ofz .

Returns

3 Thectanh functions return the complex hyperbolic tangent value.

7.3.7 Exponential and logarithmic functions

7.3.7.1 Thecexp functions

Synopsis

1 #include <complex.h>
double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

Description

2 Thecexp functions compute the complex base-eexponential ofz .

Returns

3 Thecexp functions return the complex base-eexponential value.

7.3.7.2 Theclog functions

Synopsis

1 #include <complex.h>
double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

176 Library §7.3.7.2

©ISO/IEC ISO/IEC 9899:1999 (E)

Description

2 Theclog functions compute the complex natural (base-e) logarithm ofz , with a branch
cut along the negative real axis.

Returns

3 Theclog functions return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ , +iπ] along the
imaginary axis.

7.3.8 Power and absolute-value functions

7.3.8.1 Thecabs functions

Synopsis

1 #include <complex.h>
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

Description

2 Thecabs functions compute the complex absolute value (also called norm, modulus, or
magnitude) ofz .

Returns

3 Thecabs functions return the complex absolute value.

7.3.8.2 Thecpow functions

Synopsis

1 #include <complex.h>
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,

long double complex y);

Description

2 Thecpow functions compute the complex power functionxy , with a branch cut for the
first parameter along the negative real axis.

Returns

3 Thecpow functions return the complex power function value.

§7.3.8.2 Library 177

ISO/IEC 9899:1999 (E) ©ISO/IEC

7.3.8.3 Thecsqrt functions

Synopsis

1 #include <complex.h>
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

Description

2 Thecsqrt functions compute the complex square root ofz , with a branch cut along the
negative real axis.

Returns

3 Thecsqrt functions return the complex square root value, in the range of the right half-
plane (including the imaginary axis).

7.3.9 Manipulation functions

7.3.9.1 Thecarg functions

Synopsis

1 #include <complex.h>
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

Description

2 Thecarg functions compute the argument (also called phase angle) ofz , with a branch
cut along the negative real axis.

Returns

3 Thecarg functions return the value of the argument in the interval [−π , +π].

7.3.9.2 Thecimag functions

Synopsis

1 #include <complex.h>
double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

178 Library §7.3.9.2

