https://github.com/datenwolf/linmath.h
针对图形编程的精益线性数学库。支持vec3,vec4,mat4x4和四元数
#linmath.h - 用于计算机图形所需的线性数学的小型库
linmath.h提供了最常用的类型编程计算机graphice所需的:
vec3 - 漂浮的3元素向量
vec4 - 浮点数的4个元素向量(用于均匀计算的第4个元素)
mat4x4 - 4乘4元素矩阵,计算按列主要顺序完成
quat - quaternion
这些类型是特意命名的,就像GLSL中的类型一样。事实上,他们的目的是
用于客户端计算并传递给相同类型的GLSL制服。
linmath.h 源码:
#ifndef LINMATH_H
#define LINMATH_H
#include <math.h>
#define LINMATH_H_DEFINE_VEC(n) \
typedef float vec##n[n]; \
static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \
{ \
int i; \
for(i=0; i<n; ++i) \
r[i] = a[i] + b[i]; \
} \
static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \
{ \
int i; \
for(i=0; i<n; ++i) \
r[i] = a[i] - b[i]; \
} \
static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) \
{ \
int i; \
for(i=0; i<n; ++i) \
r[i] = v[i] * s; \
} \
static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \
{ \
float p = 0.; \
int i; \
for(i=0; i<n; ++i) \
p += b[i]*a[i]; \
return p; \
} \
static inline float vec##n##_len(vec##n const v) \
{ \
return sqrtf(vec##n##_mul_inner(v,v)); \
} \
static inline void vec##n##_norm(vec##n r, vec##n const v) \
{ \
float k = 1.0 / vec##n##_len(v); \
vec##n##_scale(r, v, k); \
} \
static inline void vec##n##_min(vec##n r, vec##n a, vec##n b) \
{ \
int i; \
for(i=0; i<n; ++i) \
r[i] = a[i]<b[i] ? a[i] : b[i]; \
} \
static inline void vec##n##_max(vec##n r, vec##n a, vec##n b) \
{ \
int i; \
for(i=0; i<n; ++i) \
r[i] = a[i]>b[i] ? a[i] : b[i]; \
}
LINMATH_H_DEFINE_VEC(2)
LINMATH_H_DEFINE_VEC(3)
LINMATH_H_DEFINE_VEC(4)
static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b)
{
r[0] = a[1]*b[2] - a[2]*b[1];
r[1] = a[2]*b[0] - a[0]*b[2];
r[2] = a[0]*b[1] - a[1]*b[0];
}
static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
{
float p = 2.f*vec3_mul_inner(v, n);
int i;
for(i=0;i<3;++i)
r[i] = v[i] - p*n[i];
}
static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
{
r[0] = a[1]*b[2] - a[2]*b[1];
r[1] = a[2]*b[0] - a[0]*b[2];
r[2] = a[0]*b[1] - a[1]*b[0];
r[3] = 1.f;
}
static inline void vec4_reflect(vec4 r, vec4 v, vec4 n)
{
float p = 2.f*vec4_mul_inner(v, n);
int i;
for(i=0;i<4;++i)
r[i] = v[i] - p*n[i];
}
typedef vec4 mat4x4[4];
static inline void mat4x4_identity(mat4x4 M)
{
int i, j;
for(i=0; i<4; ++i)
for(j=0; j<4; ++j)
M[i][j] = i==j ? 1.f : 0.f;
}
static inline void mat4x4_dup(mat4x4 M, mat4x4 N)
{
int i, j;
for(i=0; i<4; ++i)
for(j=0; j<4; ++j)
M[i][j] = N[i][j];
}
static inline void mat4x4_row(vec4 r, mat4x4 M, int i)
{
int k;
for(k=0; k<4; ++k)
r[k] = M[k][i];
}
static inline void mat4x4_col(vec4 r, mat4x4 M, int i)
{
int k;
for(k=0; k<4; ++k)
r[k] = M[i][k];
}
static inline void mat4x4_transpose(mat4x4 M, mat4x4 N)
{
int i, j;
for(j=0; j<4; ++j)
for(i=0; i<4; ++i)
M[i][j] = N[j][i];
}
static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b)
{
int i;
for(i=0; i<4; ++i)
vec4_add(M[i], a[i], b[i]);
}
static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b)
{
int i;
for(i=0; i<4; ++i)
vec4_sub(M[i], a[i], b[i]);
}
static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k)
{
int i;
for(i=0; i<4; ++i)
vec4_scale(M[i], a[i], k);
}
static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z)
{
int i;
vec4_scale(M[0], a[0], x);
vec4_scale(M[1], a[1], y);
vec4_scale(M[2], a[2], z);
for(i = 0; i < 4; ++i) {
M[3][i] = a[3][i];
}
}
static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
{
mat4x4 temp;
int k, r, c;
for(c=0; c<4; ++c) for(r=0; r<4; ++r) {
temp[c][r] = 0.f;
for(k=0; k<4; ++k)
temp[c][r] += a[k][r] * b[c][k];
}
mat4x4_dup(M, temp);
}
static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
{
int i, j;
for(j=0; j<4; ++j) {
r[j] = 0.f;
for(i=0; i<4; ++i)
r[j] += M[i][j] * v[i];
}
}
static inline void mat4x4_translate(mat4x4 T, float x, float y, float z)
{
mat4x4_identity(T);
T[3][0] = x;
T[3][1] = y;
T[3][2] = z;
}
static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z)
{
vec4 t = {x, y, z, 0};
vec4 r;
int i;
for (i = 0; i < 4; ++i) {
mat4x4_row(r, M, i);
M[3][i] += vec4_mul_inner(r, t);
}
}
static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b)
{
int i, j;
for(i=0; i<4; ++i) for(j=0; j<4; ++j)
M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f;
}
static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle)
{
float s = sinf(angle);
float c = cosf(angle);
vec3 u = {x, y, z};
if(vec3_len(u) > 1e-4) {
vec3_norm(u, u);
mat4x4 T;
mat4x4_from_vec3_mul_outer(T, u, u);
mat4x4 S = {
{ 0, u[2], -u[1], 0},
{-u[2], 0, u[0], 0},
{ u[1], -u[0], 0, 0},
{ 0, 0, 0, 0}
};
mat4x4_scale(S, S, s);
mat4x4 C;
mat4x4_identity(C);
mat4x4_sub(C, C, T);
mat4x4_scale(C, C, c);
mat4x4_add(T, T, C);
mat4x4_add(T, T, S);
T[3][3] = 1.;
mat4x4_mul(R, M, T);
} else {
mat4x4_dup(R, M);
}
}
static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle)
{
float s = sinf(angle);
float c = cosf(angle);
mat4x4 R = {
{1.f, 0.f, 0.f, 0.f},
{0.f, c, s, 0.f},
{0.f, -s, c, 0.f},
{0.f, 0.f, 0.f, 1.f}
};
mat4x4_mul(Q, M, R);
}
static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle)
{
float s = sinf(angle);
float c = cosf(angle);
mat4x4 R = {
{ c, 0.f, s, 0.f},
{ 0.f, 1.f, 0.f, 0.f},
{ -s, 0.f, c, 0.f},
{ 0.f, 0.f, 0.f, 1.f}
};
mat4x4_mul(Q, M, R);
}
static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle)
{
float s = sinf(angle);
float c = cosf(angle);
mat4x4 R = {
{ c, s, 0.f, 0.f},
{ -s, c, 0.f, 0.f},
{ 0.f, 0.f, 1.f, 0.f},
{ 0.f, 0.f, 0.f, 1.f}
};
mat4x4_mul(Q, M, R);
}
static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
{
float s[6];
float c[6];
s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1];
s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2];
s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3];
s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2];
s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3];
s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3];
c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1];
c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2];
c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3];
c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2];
c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3];
c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3];
/* Assumes it is invertible */
float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] );
T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
}
static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
{
mat4x4_dup(R, M);
float s = 1.;
vec3 h;
vec3_norm(R[2], R[2]);
s = vec3_mul_inner(R[1], R[2]);
vec3_scale(h, R[2], s);
vec3_sub(R[1], R[1], h);
vec3_norm(R[2], R[2]);
s = vec3_mul_inner(R[1], R[2]);
vec3_scale(h, R[2], s);
vec3_sub(R[1], R[1], h);
vec3_norm(R[1], R[1]);
s = vec3_mul_inner(R[0], R[1]);
vec3_scale(h, R[1], s);
vec3_sub(R[0], R[0], h);
vec3_norm(R[0], R[0]);
}
static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f)
{
M[0][0] = 2.f*n/(r-l);
M[0][1] = M[0][2] = M[0][3] = 0.f;
M[1][1] = 2.*n/(t-b);
M[1][0] = M[1][2] = M[1][3] = 0.f;
M[2][0] = (r+l)/(r-l);
M[2][1] = (t+b)/(t-b);
M[2][2] = -(f+n)/(f-n);
M[2][3] = -1.f;
M[3][2] = -2.f*(f*n)/(f-n);
M[3][0] = M[3][1] = M[3][3] = 0.f;
}
static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f)
{
M[0][0] = 2.f/(r-l);
M[0][1] = M[0][2] = M[0][3] = 0.f;
M[1][1] = 2.f/(t-b);
M[1][0] = M[1][2] = M[1][3] = 0.f;
M[2][2] = -2.f/(f-n);
M[2][0] = M[2][1] = M[2][3] = 0.f;
M[3][0] = -(r+l)/(r-l);
M[3][1] = -(t+b)/(t-b);
M[3][2] = -(f+n)/(f-n);
M[3][3] = 1.f;
}
static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f)
{
/* NOTE: Degrees are an unhandy unit to work with.
* linmath.h uses radians for everything! */
float const a = 1.f / tan(y_fov / 2.f);
m[0][0] = a / aspect;
m[0][1] = 0.f;
m[0][2] = 0.f;
m[0][3] = 0.f;
m[1][0] = 0.f;
m[1][1] = a;
m[1][2] = 0.f;
m[1][3] = 0.f;
m[2][0] = 0.f;
m[2][1] = 0.f;
m[2][2] = -((f + n) / (f - n));
m[2][3] = -1.f;
m[3][0] = 0.f;
m[3][1] = 0.f;
m[3][2] = -((2.f * f * n) / (f - n));
m[3][3] = 0.f;
}
static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
{
/* Adapted from Android's OpenGL Matrix.java. */
/* See the OpenGL GLUT documentation for gluLookAt for a description */
/* of the algorithm. We implement it in a straightforward way: */
/* TODO: The negation of of can be spared by swapping the order of
* operands in the following cross products in the right way. */
vec3 f;
vec3_sub(f, center, eye);
vec3_norm(f, f);
vec3 s;
vec3_mul_cross(s, f, up);
vec3_norm(s, s);
vec3 t;
vec3_mul_cross(t, s, f);
m[0][0] = s[0];
m[0][1] = t[0];
m[0][2] = -f[0];
m[0][3] = 0.f;
m[1][0] = s[1];
m[1][1] = t[1];
m[1][2] = -f[1];
m[1][3] = 0.f;
m[2][0] = s[2];
m[2][1] = t[2];
m[2][2] = -f[2];
m[2][3] = 0.f;
m[3][0] = 0.f;
m[3][1] = 0.f;
m[3][2] = 0.f;
m[3][3] = 1.f;
mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
}
typedef float quat[4];
static inline void quat_identity(quat q)
{
q[0] = q[1] = q[2] = 0.f;
q[3] = 1.f;
}
static inline void quat_add(quat r, quat a, quat b)
{
int i;
for(i=0; i<4; ++i)
r[i] = a[i] + b[i];
}
static inline void quat_sub(quat r, quat a, quat b)
{
int i;
for(i=0; i<4; ++i)
r[i] = a[i] - b[i];
}
static inline void quat_mul(quat r, quat p, quat q)
{
vec3 w;
vec3_mul_cross(r, p, q);
vec3_scale(w, p, q[3]);
vec3_add(r, r, w);
vec3_scale(w, q, p[3]);
vec3_add(r, r, w);
r[3] = p[3]*q[3] - vec3_mul_inner(p, q);
}
static inline void quat_scale(quat r, quat v, float s)
{
int i;
for(i=0; i<4; ++i)
r[i] = v[i] * s;
}
static inline float quat_inner_product(quat a, quat b)
{
float p = 0.f;
int i;
for(i=0; i<4; ++i)
p += b[i]*a[i];
return p;
}
static inline void quat_conj(quat r, quat q)
{
int i;
for(i=0; i<3; ++i)
r[i] = -q[i];
r[3] = q[3];
}
static inline void quat_rotate(quat r, float angle, vec3 axis) {
vec3 v;
vec3_scale(v, axis, sinf(angle / 2));
int i;
for(i=0; i<3; ++i)
r[i] = v[i];
r[3] = cosf(angle / 2);
}
#define quat_norm vec4_norm
static inline void quat_mul_vec3(vec3 r, quat q, vec3 v)
{
/*
* Method by Fabian 'ryg' Giessen (of Farbrausch)
t = 2 * cross(q.xyz, v)
v' = v + q.w * t + cross(q.xyz, t)
*/
vec3 t;
vec3 q_xyz = {q[0], q[1], q[2]};
vec3 u = {q[0], q[1], q[2]};
vec3_mul_cross(t, q_xyz, v);
vec3_scale(t, t, 2);
vec3_mul_cross(u, q_xyz, t);
vec3_scale(t, t, q[3]);
vec3_add(r, v, t);
vec3_add(r, r, u);
}
static inline void mat4x4_from_quat(mat4x4 M, quat q)
{
float a = q[3];
float b = q[0];
float c = q[1];
float d = q[2];
float a2 = a*a;
float b2 = b*b;
float c2 = c*c;
float d2 = d*d;
M[0][0] = a2 + b2 - c2 - d2;
M[0][1] = 2.f*(b*c + a*d);
M[0][2] = 2.f*(b*d - a*c);
M[0][3] = 0.f;
M[1][0] = 2*(b*c - a*d);
M[1][1] = a2 - b2 + c2 - d2;
M[1][2] = 2.f*(c*d + a*b);
M[1][3] = 0.f;
M[2][0] = 2.f*(b*d + a*c);
M[2][1] = 2.f*(c*d - a*b);
M[2][2] = a2 - b2 - c2 + d2;
M[2][3] = 0.f;
M[3][0] = M[3][1] = M[3][2] = 0.f;
M[3][3] = 1.f;
}
static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
{
/* XXX: The way this is written only works for othogonal matrices. */
/* TODO: Take care of non-orthogonal case. */
quat_mul_vec3(R[0], q, M[0]);
quat_mul_vec3(R[1], q, M[1]);
quat_mul_vec3(R[2], q, M[2]);
R[3][0] = R[3][1] = R[3][2] = 0.f;
R[3][3] = 1.f;
}
static inline void quat_from_mat4x4(quat q, mat4x4 M)
{
float r=0.f;
int i;
int perm[] = { 0, 1, 2, 0, 1 };
int *p = perm;
for(i = 0; i<3; i++) {
float m = M[i][i];
if( m < r )
continue;
m = r;
p = &perm[i];
}
r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] );
if(r < 1e-6) {
q[0] = 1.f;
q[1] = q[2] = q[3] = 0.f;
return;
}
q[0] = r/2.f;
q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r);
q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r);
q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r);
}
#endif
离线
好深奥啊。。。
离线