页次: 1
折腾好几天了
驱动写好后,打开摄像头一直接收不到数据
内核一直包这个错误[VFE]cs/isp reset after csi/isp interrupt timeout!
[VFE]cs/isp reset after csi/isp interrupt timeout!
/*
* A V4L2 driver for gc2023_mipi_2lane Raw cameras.
*
*/
#include "rn6752V1_configuration.h"
MODULE_AUTHOR("lth");
MODULE_DESCRIPTION("A low-level driver for rm6752V1_mipi_2lane Raw sensors");
MODULE_LICENSE("GPL");
//for internel driver debug
#define DEV_DBG_EN 1
#if(DEV_DBG_EN == 1)
#define vfe_dev_dbg(x,arg...) printk("[rm6752V1_mipi_2lane Raw]"x,##arg)
#else
#define vfe_dev_dbg(x,arg...)
#endif
#define vfe_dev_err(x,arg...) printk("[rm6752V1_mipi_2lane Raw]"x,##arg)
#define vfe_dev_print(x,arg...) printk("[rm6752V1_mipi_2lane Raw]"x,##arg)
#define LOG_ERR_RET(x) { \
int ret; \
ret = x; \
if(ret < 0) {\
vfe_dev_err("error at %s\n",__func__); \
return ret; \
} \
}
//define module timing
#define MCLK (24*1000*1000)
#define VREF_POL V4L2_MBUS_VSYNC_ACTIVE_HIGH
#define HREF_POL V4L2_MBUS_HSYNC_ACTIVE_HIGH
#define CLK_POL V4L2_MBUS_PCLK_SAMPLE_RISING
#define V4L2_IDENT_SENSOR 0x6752
/*
*Our nominal (default) frame rate.
*/
#define SENSOR_FRAME_RATE 60
#define I2C_ADDR 0x2c
#define SENSOR_NAME "rn6752V1_mipi_2lane"
//static struct delayed_work sensor_s_ae_ratio_work;
static struct v4l2_subdev *glb_sd;
/*
* Information we maintain about a known sensor.
*/
struct sensor_format_struct; /* coming later */
struct cfg_array { /* coming later */
struct regval_list * regs;
int size;
};
static inline struct sensor_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct sensor_info, sd);
}
static struct regval_list uyvy[] = {
//{REG_TERM,VAL_TERM},
};
/*
* Store information about the video data format.
*/
static struct sensor_format_struct {
__u8 *desc;
//__u32 pixelformat;
enum v4l2_mbus_pixelcode mbus_code;
struct regval_list *regs;
int regs_size;
int bpp; /* Bytes per pixel */
}sensor_formats[] = {
{
.desc = "UYVY 4:2:2",
.mbus_code = V4L2_MBUS_FMT_UYVY8_2X8,
.regs = uyvy,
.regs_size = ARRAY_SIZE(uyvy),
.bpp = 1
},
};
#define N_FMTS ARRAY_SIZE(sensor_formats)
static struct regval_list sensor_720p30_regs[] = {
//{REG_TERM,VAL_TERM},
};
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
static struct sensor_win_size sensor_win_sizes[] = {
/* 720P */
{
.width = 1280,
.height = 720,
.hoffset = 0,
.voffset = 0,
.hts = 1920,
.vts = 750,
.mipi_bps = 324*1000*1000,
.fps_fixed = 25,
.bin_factor = 1,
.intg_min = 1<<4,
.intg_max = 750<<4,//
.gain_min = 1<<4,
.gain_max = 64<<4,
.regs = sensor_720p30_regs,
.regs_size = ARRAY_SIZE(sensor_720p30_regs),
.set_size = NULL,
},
};
/*
* Low-level register I/O.
*
*/
static int sensor_read(struct v4l2_subdev *sd, unsigned char reg,
unsigned char *value) //!!!!be careful of the para type!!!
{
int ret=0;
int cnt=0;
ret = cci_read_a8_d8(sd,reg,value);
vfe_dev_dbg("cci_read_a8_d81 addr = 0x%2x, value = 0x%2x \n",reg,value);
while(ret!=0&&cnt<2)
{
ret = cci_read_a8_d8(sd,reg,value);
cnt++;
}
if(cnt>0)
vfe_dev_dbg("sensor read retry=%d\n",cnt);
return ret;
}
static int sensor_write(struct v4l2_subdev *sd, unsigned char reg,
unsigned char value)
{
int ret=0;
int cnt=0;
ret = cci_write_a8_d8(sd,reg,value);
while(ret!=0&&cnt<2)
{
ret = cci_write_a8_d8(sd,reg,value);
cnt++;
}
if(cnt>0)
vfe_dev_dbg("sensor write retry=%d\n",cnt);
return ret;
}
/*
* Write a list of register settings;
*/
static int sensor_write_array(struct v4l2_subdev *sd, struct regval_list *regs, int array_size)
{
int i=0;
if(!regs)
return -EINVAL;
while(i<array_size)
{
if(regs->addr == REG_DLY) {
msleep(regs->data);
}
else {
LOG_ERR_RET(sensor_write(sd, regs->addr, regs->data))
}
i++;
regs++;
}
return 0;
}
/*
* Stuff that knows about the sensor.
*/
static int sensor_power(struct v4l2_subdev *sd, int on)
{
vfe_dev_dbg("sensor_power!\n");
int ret;
ret = 0;
switch(on)
{
case CSI_SUBDEV_STBY_ON:
vfe_dev_dbg("CSI_SUBDEV_STBY_ON!\n");
cci_lock(sd);
vfe_gpio_write(sd,PWDN,0);
usleep_range(10000,12000);
cci_unlock(sd);
break;
case CSI_SUBDEV_STBY_OFF:
vfe_dev_dbg("CSI_SUBDEV_STBY_OFF!\n");
cci_lock(sd);
vfe_gpio_write(sd,PWDN,1);
usleep_range(10000,12000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_ON:
vfe_dev_dbg("CSI_SUBDEV_PWR_ON!\n");
cci_lock(sd);
vfe_gpio_set_status(sd,PWDN,1);
vfe_gpio_set_status(sd,RESET,1);
vfe_gpio_write(sd,RESET,1);
usleep_range(10000,10000);
vfe_gpio_write(sd,PWDN,1);
usleep_range(50000,50000);
vfe_gpio_write(sd,RESET,0);
usleep_range(20000,20000);
vfe_gpio_write(sd,RESET,1);
usleep_range(200000,300000);
cci_unlock(sd);
break;
case CSI_SUBDEV_PWR_OFF:
vfe_dev_dbg("CSI_SUBDEV_PWR_OFF!\n");
cci_lock(sd);
vfe_gpio_write(sd,PWDN,0);
vfe_gpio_write(sd,RESET,1);
cci_unlock(sd);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_reset(struct v4l2_subdev *sd, u32 val)
{
switch(val)
{
case 0:
vfe_gpio_write(sd,RESET,1);
usleep_range(10000,12000);
break;
case 1:
vfe_gpio_write(sd,RESET,0);
usleep_range(10000,12000);
break;
default:
return -EINVAL;
}
return 0;
}
static int sensor_detect(struct v4l2_subdev *sd)
{
unsigned char rdval;
LOG_ERR_RET(sensor_read(sd, 0xfd, &rdval))
vfe_dev_dbg("gc2023_mipi_2lane ID_VAL_HIGH = %2x, Done!\n", rdval);
if(rdval != 0x01)
return -ENODEV;
LOG_ERR_RET(sensor_read(sd, 0xfe, &rdval))
vfe_dev_dbg("gc2023_mipi_2lane ID_VAL_LOW = %2x, Done!\n", rdval);
if(rdval != 0x26)
return -ENODEV;
return 0;
}
#if 1
#define RN6752V1_HDR_CONFIGURATION
static struct regval_list RN675x_init_cfg[] = {
// 720P@25 with mipi 2 data lanes + 1 clock lane out
// pin24/23 data lane0}, pin18/17 data lane1
// pin16/15 data lane2}, pin12/11 data lane3
// pin14/13 clock lane
// Slave address is {0x58
// Register}, data
// if clock source(Xin) of RN6752 is 26MHz}, please add these procedures marked first
//{0xD2,0x85}, // disable auto clock detect
//{0xD6,0x37}, // 27MHz default
//{0xD8,0x18}, // switch to 26MHz clock
//delay(100)}, // delay 100ms
{0x81,0x01}, // turn on video decoder
{0xDF,0xFE}, // enable HD format
{0x88,0x40}, // disable SCLK0B out
{0xF6,0x40}, // disable SCLK3A out
// ch0
{0xFF,0x00}, // switch to ch0 (default; optional)
{0x00,0x20}, // internal use*
{0x06,0x08}, // internal use*
{0x07,0x63}, // HD format
{0x2A,0x01}, // filter control
{0x3A,0x20}, // Insert Channel ID in SAV/EAV code
{0x3F,0x10}, // channel ID
{0x4C,0x37}, // equalizer
{0x4F,0x03}, // sync control
{0x50,0x02}, // 720p resolution
{0x56,0x01}, // BT 72M mode
{0x5F,0x40}, // blank level
{0x63,0xF5}, // filter control
{0x59,0x00}, // extended register access
{0x5A,0x42}, // data for extended register
{0x58,0x01}, // enable extended register write
{0x59,0x33}, // extended register access
{0x5A,0x23}, // data for extended register
{0x58,0x01}, // enable extended register write
{0x51,0xE1}, // scale factor1
{0x52,0x88}, // scale factor2
{0x53,0x12}, // scale factor3
{0x5B,0x07}, // H-scaling control
{0x5E,0x08}, // enable H-scaling control
{0x6A,0x82}, // H-scaling control
{0x28,0x92}, // cropping
{0x03,0x80}, // saturation
{0x04,0x80}, // hue
{0x05,0x00}, // sharpness
{0x57,0x23}, // black/white stretch
{0x68,0x32}, // coring
{0x37,0x33},
{0x61,0x6C},
#ifdef RN6752V1_HDR_CONFIGURATION
{0x1D,0xFF},
{0x28,0x90},
{0x2D,0xFA},
{0x4E,0x01},
{0x67,0x66},
{0x0B,0x80},
{0x09,0x00},
{0x0D,0x18},
{0x49,0x84},
{0x57,0x63},
{0x59,0x20},
{0x5A,0x6C},
{0x58,0x01},
#endif
// mipi link1
{0xFF,0x09}, // switch to mipi tx1
{0x00,0x03}, // enable bias
{0xFF,0x08}, // switch to mipi csi1
{0x04,0x03}, // csi1 and tx1 reset
{0x6C,0x11}, // disable ch output; turn on ch0
{0x06,0x4C}, // 2 lanes
{0x21,0x01}, // enable hs clock
{0x78,0x80}, // Y/C counts for ch0
{0x79,0x02}, // Y/C counts for ch0
{0x6C,0x01}, // enable ch output
{0x04,0x00}, // csi1 and tx1 reset finish
{0x07,0x05}, //enable non-continuous clock
//{0x20,0xAA}, // invert hs clock
// mipi link3
{0xFF,0x0A}, // switch to mipi csi3
{0x6C,0x10}, // disable ch output; turn off ch0~3
// switch bank
{0xFF,0x00}, //to bank0
};
int RN675xM_Pre_initial(struct v4l2_subdev *sd)
{
int ret = 0;
unsigned char rom_byte1, rom_byte2, rom_byte3, rom_byte4, rom_byte5, rom_byte6;
sensor_write(sd,0xE1, 0x80);
sensor_write(sd,0xFA, 0x81);
sensor_read(sd, 0xFB, &rom_byte1);
sensor_read(sd, 0xFB, &rom_byte2);
sensor_read(sd, 0xFB, &rom_byte3);
sensor_read(sd, 0xFB, &rom_byte4);
sensor_read(sd, 0xFB, &rom_byte5);
sensor_read(sd, 0xFB, &rom_byte6);
if ((rom_byte6 == 0x00) && (rom_byte5 == 0x00)) {
sensor_write(sd,0xEF, 0xAA);
sensor_write(sd,0xE7, 0xFF);
sensor_write(sd,0xFF, 0x09);
sensor_write(sd,0x03, 0x0C);
sensor_write(sd,0xFF, 0x0B);
sensor_write(sd,0x03, 0x0C);
}
else if (((rom_byte6 == 0x34) && (rom_byte5 == 0xA9)) ||
((rom_byte6 == 0x2C) && (rom_byte5 == 0xA8))) {
sensor_write(sd,0xEF, 0xAA);
sensor_write(sd,0xE7, 0xFF);
sensor_write(sd,0xFC, 0x60);
sensor_write(sd,0xFF, 0x09);
sensor_write(sd,0x03, 0x18);
sensor_write(sd,0xFF, 0x0B);
sensor_write(sd,0x03, 0x18);
}
else {
sensor_write(sd,0xEF, 0xAA);
sensor_write(sd,0xFC, 0x60);
sensor_write(sd,0xFF, 0x09);
sensor_write(sd,0x03, 0x18);
sensor_write(sd,0xFF, 0x0B);
sensor_write(sd,0x03, 0x18);
}
usleep_range(50000,60000);
sensor_win_sizes[0].width= 1280;
sensor_win_sizes[0].height = 720;
sensor_win_sizes[0].fps_fixed=25;
sensor_win_sizes[0].hts=1920;
sensor_win_sizes[0].vts=750;
ret = sensor_write_array(sd, RN675x_init_cfg, ARRAY_SIZE(RN675x_init_cfg));
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
return 0;
}
#endif
static int sensor_init(struct v4l2_subdev *sd, u32 val)
{
int ret;
int conut = 10;
unsigned char rdval;
struct sensor_info *info = to_state(sd);
struct regval_list *regs;
int regsLen = 0;
vfe_dev_dbg("sensor_init\n");
/*Make sure it is a target sensor*/
ret = sensor_detect(sd);
if (ret) {
vfe_dev_err("chip found is not an target chip.\n");
return ret;
}
vfe_get_standby_mode(sd,&info->stby_mode);
if((info->stby_mode == HW_STBY || info->stby_mode == SW_STBY) \
&& info->init_first_flag == 0) {
vfe_dev_print("stby_mode and init_first_flag = 0\n");
return 0;
}
#if 0
vfe_dev_dbg("sensor_init11\n");
while(conut--){
usleep_range(100000,120000);
ret = sensor_read(sd, 0x00, &rdval);
if(ret) {
vfe_dev_err("sensor_read error\n");
}
if(!(rdval & (1<< 4))) {
break;
}
}
vfe_dev_dbg("sensor info %02x\n",rdval);
if(rdval & (1<< 4)) {
// 无信息按照P制处理
vfe_dev_err("sensor no info\n");
regs = cvbs_pal_video;
regsLen = ARRAY_SIZE(cvbs_pal_video);
sensor_win_sizes[0].fps_fixed=50;
sensor_win_sizes[0].width= 720;
sensor_win_sizes[0].height = 576;
} else {
if(rdval & (1<< 5)){
sensor_win_sizes[0].width= 1280;
sensor_win_sizes[0].height = 720;
if(rdval & (1 << 0)){
vfe_dev_dbg("sensor info 720 30ps\n");
regs = HD_720P30_video;
regsLen = ARRAY_SIZE(HD_720P30_video);
sensor_win_sizes[0].fps_fixed=30;
} else {
vfe_dev_dbg("sensor info 720 25ps\n");
regs = HD_720P25_video;
sensor_win_sizes[0].fps_fixed=25;
regsLen = ARRAY_SIZE(HD_720P25_video);
}
}
else if(rdval & (1<< 6)){
sensor_win_sizes[0].width= 1920;
sensor_win_sizes[0].height = 1080;
if(rdval & (1 << 0)){
vfe_dev_dbg("sensor info 1080 30ps\n");
regs = FHD_1080P30_video;
sensor_win_sizes[0].fps_fixed=30;
regsLen = ARRAY_SIZE(HD_720P30_video);
} else {
vfe_dev_dbg("sensor info 1080 25ps\n");
regs = FHD_1080P25_video;
sensor_win_sizes[0].fps_fixed=25;
regsLen = ARRAY_SIZE(HD_720P30_video);
}
} else {
if(rdval & (1 << 0)){
vfe_dev_dbg("sensor info D1 ntsc 60\n");
sensor_win_sizes[0].width= 720;
sensor_win_sizes[0].height = 480;
sensor_win_sizes[0].fps_fixed=60;
regs = cvbs_ntsc_video;
regsLen = ARRAY_SIZE(cvbs_ntsc_video);
} else {
vfe_dev_dbg("sensor info D1 pal 50\n");
sensor_win_sizes[0].width= 720;
sensor_win_sizes[0].height = 576;
sensor_win_sizes[0].fps_fixed=50;
regs = cvbs_pal_video;
regsLen = ARRAY_SIZE(cvbs_pal_video);
}
}
}
vfe_dev_dbg("sensor_init55\n");
ret = sensor_write_array(sd, regs, regsLen);
if(ret < 0) {
vfe_dev_err("write sensor_default_regs error\n");
return ret;
}
#else
ret = RN675xM_Pre_initial(sd);
if(ret < 0) {
vfe_dev_err("write RN675xM_Pre_initial error\n");
return ret;
}
#endif
info->focus_status = 0;
info->low_speed = 0;
info->hflip = 0;
info->vflip = 0;
info->gain = 0;
info->fmt = &sensor_formats[0];
info->width = sensor_win_sizes[0].width;
info->height = sensor_win_sizes[0].height;
info->tpf.numerator = 1;
info->tpf.denominator = sensor_win_sizes[0].fps_fixed; /* 30fps */
if(info->stby_mode == 0)
info->init_first_flag = 0;
info->preview_first_flag = 1;
vfe_dev_dbg("sensor_init ok\n");
return 0;
}
static long sensor_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
int ret=0;
struct sensor_info *info = to_state(sd);
switch(cmd) {
case GET_CURRENT_WIN_CFG:
if(info->current_wins != NULL)
{
memcpy( arg,info->current_wins,sizeof(struct sensor_win_size) );
ret=0;
}
else
{
vfe_dev_err("empty wins!\n");
ret=-1;
}
break;
case SET_FPS:
ret=0;
break;
default:
return -EINVAL;
}
return ret;
}
#define N_WIN_SIZES (ARRAY_SIZE(sensor_win_sizes))
static int sensor_enum_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
vfe_dev_err("sensor_enum_fmt:%d\n",index);
if (index >= N_FMTS)
return -EINVAL;
*code = sensor_formats[index].mbus_code;
return 0;
}
static int sensor_enum_size(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
if(fsize->index > N_WIN_SIZES-1)
return -EINVAL;
vfe_dev_err("sensor_enum_size\n");
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = sensor_win_sizes[fsize->index].width;
fsize->discrete.height = sensor_win_sizes[fsize->index].height;
return 0;
}
static int sensor_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct sensor_format_struct **ret_fmt,
struct sensor_win_size **ret_wsize)
{
int index;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_err("sensor_try_fmt_internal\n");
for (index = 0; index < N_FMTS; index++)
if (sensor_formats[index].mbus_code == fmt->code)
break;
vfe_dev_err("sensor_try_fmt_internal22:%d:%d\n",sensor_formats[0].mbus_code,fmt->code);
vfe_dev_err("sensor_try_fmt_internal33:%d:%d\n",fmt->width,fmt->height);
vfe_dev_err("sensor_try_fmt_internal44:%d\n",info->tpf.denominator);
if (index >= N_FMTS)
{
vfe_dev_err("index >= N_FMTS \n");
return -EINVAL;
}
if (ret_fmt != NULL)
*ret_fmt = sensor_formats + index;
/*
* Fields: the sensor devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = sensor_win_sizes; wsize < sensor_win_sizes + N_WIN_SIZES;
wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height && info->tpf.denominator == wsize->fps_fixed)
break;
if (wsize >= sensor_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
info->current_wins = wsize;
return 0;
}
/*
* Code for dealing with controls.
* fill with different sensor module
* different sensor module has different settings here
* if not support the follow function ,retrun -EINVAL
*/
static int sensor_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->exp;
vfe_dev_dbg("sensor_get_exposure = %d\n", info->exp);
return 0;
}
static int sensor_s_exp(struct v4l2_subdev *sd, unsigned int exp_val)
{
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_set_exposure = %d\n", exp_val);
if(exp_val>0xffffff)
exp_val=0xfffff0;
if(exp_val<16)
exp_val=16;
exp_val=(exp_val)>>4;//rounding to 1
info->exp = exp_val;
return 0;
}
static int sensor_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
struct sensor_info *info = to_state(sd);
*value = info->gain;
vfe_dev_dbg("sensor_get_gain = %d\n", info->gain);
return 0;
}
static int sensor_s_gain(struct v4l2_subdev *sd, int gain_val)
{
struct sensor_info *info = to_state(sd);
unsigned short dig_gain = 0x80; // 1 times digital gain
info->gain = gain_val;
return 0;
}
static int sensor_try_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
vfe_dev_err("sensor_try_fmt\n");
return sensor_try_fmt_internal(sd, fmt, NULL, NULL);
}
static int sensor_g_mbus_config(struct v4l2_subdev *sd,
struct v4l2_mbus_config *cfg)
{
vfe_dev_err("sensor_g_mbus_config\n");
cfg->type = V4L2_MBUS_CSI2;
cfg->flags = 0|V4L2_MBUS_CSI2_2_LANE|V4L2_MBUS_CSI2_CHANNEL_0;
return 0;
}
/*
* Set a format.
*/
static int sensor_s_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
int ret;
struct sensor_format_struct *sensor_fmt;
struct sensor_win_size *wsize;
struct sensor_info *info = to_state(sd);
vfe_dev_dbg("sensor_s_fmt\n");
ret = sensor_try_fmt_internal(sd, fmt, &sensor_fmt, &wsize);
if (ret)
return ret;
if(info->capture_mode == V4L2_MODE_VIDEO)
{
}
else if(info->capture_mode == V4L2_MODE_IMAGE)
{
}
LOG_ERR_RET(sensor_write_array(sd, sensor_fmt->regs, sensor_fmt->regs_size))
ret = 0;
if (wsize->regs)
LOG_ERR_RET(sensor_write_array(sd, wsize->regs, wsize->regs_size))
if (wsize->set_size)
LOG_ERR_RET(wsize->set_size(sd))
info->fmt = sensor_fmt;
info->width = wsize->width;
info->height = wsize->height;
vfe_dev_print("s_fmt set width = %d, height = %d\n",wsize->width,wsize->height);
if(info->capture_mode == V4L2_MODE_VIDEO)
{
} else {
}
printk("sensor_s_fmt: wsize.width = [%d], wsize.height = [%d]\n", wsize->width, wsize->height);
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int sensor_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
vfe_dev_err("sensor_g_parm\n");
struct v4l2_captureparm *cp = &parms->parm.capture;
struct sensor_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->capturemode = info->capture_mode;
return 0;
}
static int sensor_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
vfe_dev_err("sensor_s_parm\n");
struct v4l2_captureparm *cp = &parms->parm.capture;
//struct v4l2_fract *tpf = &cp->timeperframe;
struct sensor_info *info = to_state(sd);
//unsigned char div;
vfe_dev_dbg("sensor_s_parm\n");
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (info->tpf.numerator == 0)
return -EINVAL;
info->capture_mode = cp->capturemode;
return 0;
}
static int sensor_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
vfe_dev_err("sensor_queryctrl\n");
switch (qc->id) {
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 1*16, 16*9-1, 1, 16);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 1, 65536*16, 1, 1);
case V4L2_CID_FRAME_RATE:
return v4l2_ctrl_query_fill(qc, 15, 120, 1, 30);
}
return -EINVAL;
}
static int sensor_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
vfe_dev_err("sensor_g_ctrl\n");
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_g_gain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_g_exp(sd, &ctrl->value);
}
return -EINVAL;
return 0;
}
static int sensor_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
vfe_dev_err("sensor_s_ctrl\n");
struct v4l2_queryctrl qc;
int ret;
qc.id = ctrl->id;
ret = sensor_queryctrl(sd, &qc);
if (ret < 0) {
return ret;
}
if (ctrl->value < qc.minimum || ctrl->value > qc.maximum) {
return -ERANGE;
}
switch (ctrl->id) {
case V4L2_CID_GAIN:
return sensor_s_gain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return sensor_s_exp(sd, ctrl->value);
}
return -EINVAL;
return 0;
}
static int sensor_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_SENSOR, 0);
}
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops sensor_core_ops = {
.g_chip_ident = sensor_g_chip_ident,
.g_ctrl = sensor_g_ctrl,
.s_ctrl = sensor_s_ctrl,
.queryctrl = sensor_queryctrl,
.reset = sensor_reset,
.init = sensor_init,
.s_power = sensor_power,
.ioctl = sensor_ioctl,
};
static const struct v4l2_subdev_video_ops sensor_video_ops = {
.enum_mbus_fmt = sensor_enum_fmt,
.enum_framesizes = sensor_enum_size,
.try_mbus_fmt = sensor_try_fmt,
.s_mbus_fmt = sensor_s_fmt,
.s_parm = sensor_s_parm,
.g_parm = sensor_g_parm,
.g_mbus_config = sensor_g_mbus_config,
};
static const struct v4l2_subdev_ops sensor_ops = {
.core = &sensor_core_ops,
.video = &sensor_video_ops,
};
/* ----------------------------------------------------------------------- */
static struct cci_driver cci_drv = {
.name = SENSOR_NAME,
.addr_width = CCI_BITS_8,
.data_width = CCI_BITS_8,
};
static int sensor_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct sensor_info *info;
vfe_dev_dbg("sensor_probe\n");
info = kzalloc(sizeof(struct sensor_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
glb_sd = sd;
cci_dev_probe_helper(sd, client, &sensor_ops, &cci_drv);
info->fmt = &sensor_formats[0];
info->af_first_flag = 1;
info->init_first_flag = 1;
return 0;
}
static int sensor_remove(struct i2c_client *client)
{
struct v4l2_subdev * sd;
sd = cci_dev_remove_helper(client, &cci_drv);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id sensor_id[] = {
{ SENSOR_NAME, 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, sensor_id);
static struct i2c_driver sensor_driver = {
.driver = {
.owner = THIS_MODULE,
.name = SENSOR_NAME,
},
.probe = sensor_probe,
.remove = sensor_remove,
.id_table = sensor_id,
};
static __init int init_sensor(void)
{
vfe_dev_dbg("init_sensor\n");
return cci_dev_init_helper(&sensor_driver);
}
static __exit void exit_sensor(void)
{
cci_dev_exit_helper(&sensor_driver);
}
module_init(init_sensor);
module_exit(exit_sensor);
哪位大哥知道怎么原因,哪位大哥知道什么原因,支持一下(有偿支持,提供一定的费用)
联系方式:18908358629
页次: 1