您尚未登录。

楼主 #1 2020-05-15 09:32:08

xjp13
会员
注册时间: 2020-05-15
已发帖子: 3
积分: 3

ESP32-LyraT DuerOS例程运行语音没反应

按照官方文档编译了duerOS例程,烧到ESP32-LyraT 板子上,重启后从打印信息看貌似一切正常,且duerOS平台上能看到设备在线,按键和触摸都能看到输入信号,就是语音没有任何反应,不管是语音唤醒还是按键唤醒,打印结果如下:

ets Jun  8 2016 00:22:57

rst:0x1 (POWERON_RESET),boot:0x3f (SPI_FAST_FLASH_BOOT)
flash read err, 1000
ets_main.c 371 
ets Jun  8 2016 00:22:57

rst:0x10 (RTCWDT_RTC_RESET),boot:0x3f (SPI_FAST_FLASH_BOOT)
configsip: 0, SPIWP:0xee
clk_drv:0x00,q_drv:0x00,d_drv:0x00,cs0_drv:0x00,hd_drv:0x00,wp_drv:0x00
mode:DIO, clock div:1
load:0x3fff0018,len:4
load:0x3fff001c,len:6760
load:0x40078000,len:11116
load:0x40080400,len:6004
entry 0x40080704
[0;32mI (61) boot: Chip Revision: 1[0m
[0;32mI (63) boot_comm: chip revision: 1, min. bootloader chip revision: 0[0m
[0;32mI (39) boot: ESP-IDF v3.3.2-107-g722043f73 2nd stage bootloader[0m
[0;32mI (39) boot: compile time 23:49:46[0m
[0;32mI (67) boot: Enabling RNG early entropy source...[0m
[0;32mI (67) boot: SPI Speed      : 80MHz[0m
[0;32mI (67) boot: SPI Mode       : DIO[0m
[0;32mI (69) boot: SPI Flash Size : 4MB[0m
[0;32mI (73) boot: Partition Table:[0m
[0;32mI (77) boot: ## Label            Usage          Type ST Offset   Length[0m
[0;32mI (84) boot:  0 nvs              WiFi data        01 02 00009000 00006000[0m
[0;32mI (92) boot:  1 phy_init         RF data          01 01 0000f000 00001000[0m
[0;32mI (99) boot:  2 factory          factory app      00 00 00010000 00200000[0m
[0;32mI (107) boot: End of partition table[0m
[0;32mI (111) boot_comm: chip revision: 1, min. application chip revision: 0[0m
[0;32mI (118) esp_image: segment 0: paddr=0x00010020 vaddr=0x3f400020 size=0x82ed4 (536276) map[0m
[0;32mI (276) esp_image: segment 1: paddr=0x00092efc vaddr=0x3ffb0000 size=0x0425c ( 16988) load[0m
[0;32mI (282) esp_image: segment 2: paddr=0x00097160 vaddr=0x40080000 size=0x00400 (  1024) load[0m
[0;32mI (283) esp_image: segment 3: paddr=0x00097568 vaddr=0x40080400 size=0x08aa8 ( 35496) load[0m
[0;32mI (304) esp_image: segment 4: paddr=0x000a0018 vaddr=0x400d0018 size=0x132890 (1255568) map[0m
[0;32mI (653) esp_image: segment 5: paddr=0x001d28b0 vaddr=0x40088ea8 size=0x130cc ( 78028) load[0m
[0;32mI (696) boot: Loaded app from partition at offset 0x10000[0m
[0;32mI (697) boot: Disabling RNG early entropy source...[0m
[0;32mI (697) psram: This chip is ESP32-D0WD[0m
[0;32mI (702) spiram: Found 32MBit SPI RAM device[0m
[0;32mI (706) spiram: SPI RAM mode: flash 80m sram 40m[0m
[0;32mI (711) spiram: PSRAM initialized, cache is in low/high (2-core) mode.[0m
[0;32mI (719) cpu_start: Pro cpu up.[0m
[0;32mI (722) cpu_start: Application information:[0m
[0;32mI (727) cpu_start: Project name:     esp_dueros[0m
[0;32mI (732) cpu_start: App version:      v2.0-54-gabaaa79-dirty[0m
[0;32mI (739) cpu_start: Compile time:     May 14 2020 23:50:31[0m
[0;32mI (745) cpu_start: ELF file SHA256:  1c1ec4d95617f737...[0m
[0;32mI (751) cpu_start: ESP-IDF:          v3.3.2-107-g722043f73[0m
[0;32mI (757) cpu_start: Starting app cpu, entry point is 0x40081590[0m
[0;32mI (0) cpu_start: App cpu up.[0m
[0;32mI (1642) spiram: SPI SRAM memory test OK[0m
[0;32mI (1642) heap_init: Initializing. RAM available for dynamic allocation:[0m
[0;32mI (1642) heap_init: At 3FFAE6E0 len 00001920 (6 KiB): DRAM[0m
[0;32mI (1649) heap_init: At 3FFBB958 len 000246A8 (145 KiB): DRAM[0m
[0;32mI (1655) heap_init: At 3FFE0440 len 00003AE0 (14 KiB): D/IRAM[0m
[0;32mI (1661) heap_init: At 3FFE4350 len 0001BCB0 (111 KiB): D/IRAM[0m
[0;32mI (1668) heap_init: At 4009BF74 len 0000408C (16 KiB): IRAM[0m
[0;32mI (1674) cpu_start: Pro cpu start user code[0m
[0;32mI (1679) spiram: Adding pool of 4096K of external SPI memory to heap allocator[0m
[0;32mI (134) cpu_start: Starting scheduler on PRO CPU.[0m
[0;32mI (0) cpu_start: Starting scheduler on APP CPU.[0m
[0;32mI (134) spiram: Reserving pool of 32K of internal memory for DMA/internal allocations[0m
[0;32mI (174) DUEROS: ADF version is v2.0-54-gabaaa79-dirty[0m
[0;32mI (175) gpio: GPIO[36]| InputEn: 1| OutputEn: 0| OpenDrain: 0| Pullup: 1| Pulldown: 0| Intr:3 [0m
[0;32mI (179) gpio: GPIO[39]| InputEn: 1| OutputEn: 0| OpenDrain: 0| Pullup: 1| Pulldown: 0| Intr:3 [0m
[0;33mW (215) PERIPH_TOUCH: _touch_init[0m
[0;32mI (215) SDCARD: Trying to mount with base path=/sdcard[0m
[0;32mI (303) SDCARD: CID name SU04G!
[0m
[0;32mI (688) gpio: GPIO[19]| InputEn: 1| OutputEn: 0| OpenDrain: 0| Pullup: 1| Pulldown: 0| Intr:3 [0m
[0;31mE (689) gpio: gpio_install_isr_service(412): GPIO isr service already installed[0m
[0;32mI (722) gpio: GPIO[21]| InputEn: 0| OutputEn: 1| OpenDrain: 0| Pullup: 0| Pulldown: 0| Intr:0 [0m
[0;32mI (722) ES8388_DRIVER: init,out:02, in:00[0m
[0;32mI (731) ESP_AUDIO_TASK: media_ctrl_task running...,0x3f806bac[0m


----------------------------- ESP Audio Platform -----------------------------
|                                                                            |
|                      ESP_AUDIO-v1.5.6-16-gcf04695-dirty                    |
|                     Compile date: May  9 2020-14:49:56                     |
------------------------------------------------------------------------------

[0;32mI (772) ESP_AUDIO_CTRL: Func:media_ctrl_create, Line:274, MEM Total:4377324 Bytes, Inter:260192 Bytes, Dram:243704 Bytes

[0m
[0;32mI (783) AUDIO_HAL: Codec mode is 3, Ctrl:1[0m
[0;32mI (793) STAGEFRIGHTMP3_DECODER: MP3 init[0m
[0;32mI (794) I2S: DMA Malloc info, datalen=blocksize=1200, dma_buf_count=3[0m
[0;32mI (812) I2S: DMA Malloc info, datalen=blocksize=1200, dma_buf_count=3[0m
[0;32mI (814) I2S: APLL: Req RATE: 48000, real rate: 47999.961, BITS: 16, CLKM: 1, BCK_M: 8, MCLK: 12287990.000, SCLK: 1535998.750000, diva: 1, divb: 0[0m
[0;32mI (826) LYRAT_V4_3: I2S0, MCLK output by GPIO0[0m
[0;32mI (833) AUDIO_WRAPPER: Func:setup_player, Line:161, MEM Total:4364476 Bytes, Inter:243668 Bytes, Dram:227180 Bytes

[0m
[0;32mI (858) AUDIO_WRAPPER: esp_audio instance is:0x3f806bac[0m
I (911) wifi:wifi driver task: 3ffd34dc, prio:23, stack:3584, core=0
[0;32mI (911) system_api: Base MAC address is not set, read default base MAC address from BLK0 of EFUSE[0m
[0;32mI (915) system_api: Base MAC address is not set, read default base MAC address from BLK0 of EFUSE[0m
I (942) wifi:wifi firmware version: 5f8804c
I (942) wifi:config NVS flash: enabled
I (943) wifi:config nano formating: disabled
I (943) wifi:Init dynamic tx buffer num: 32
I (947) wifi:Init data frame dynamic rx buffer num: 32
I (951) wifi:Init management frame dynamic rx buffer num: 32
I (957) wifi:Init management short buffer num: 32
I (961) wifi:Init static tx buffer num: 16
I (966) wifi:Init static rx buffer size: 1600
I (969) wifi:Init static rx buffer num: 16
I (973) wifi:Init dynamic rx buffer num: 32
[0;32mI (1063) phy: phy_version: 4180, cb3948e, Sep 12 2019, 16:39:13, 0, 0[0m
I (1064) wifi:mode : sta (24:0a:c4:9d:03:f8)
I (1187) wifi:new:<1,1>, old:<1,0>, ap:<255,255>, sta:<1,1>, prof:1
I (1188) wifi:state: init -> auth (b0)
I (1190) wifi:state: auth -> assoc (0)
I (1195) wifi:state: assoc -> run (10)
I (1203) wifi:connected with TP-LINK_00B0, aid = 4, channel 1, 40U, bssid = fc:d7:33:b9:00:b0
I (1203) wifi:security type: 4, phy: bgn, rssi: -18
I (1213) wifi:pm start, type: 1

I (1214) wifi:AP's beacon interval = 102400 us, DTIM period = 1
I (1725,tid:3ffc4628) lightduer_session.c(  44):random = 75933
[0;32mI (1932) WIFI_SERV: Connect to wifi ssid: TP-LINK_00B0, pwd: 123456789[0m
[0;33mW (1935) I2S: I2S driver already installed[0m
[0;32mI (1935) LYRAT_V4_3: I2S0, MCLK output by GPIO0[0m
[0;32mI (1939) AUDIO_PIPELINE: link el->rb, el:0x3f808c98, tag:i2s, rb:0x3f808fd4[0m
[0;32mI (1946) AUDIO_PIPELINE: link el->rb, el:0x3f808dc4, tag:filter, rb:0x3f809010[0m
[0;32mI (1954) AUDIO_ELEMENT: [i2s] Element task created[0m
[0;32mI (1959) AUDIO_THREAD: The filter task allocate stack on external memory[0m
[0;31mE (1967) AUDIO_THREAD: Not found right xTaskCreateRestrictedPinnedToCore. Please apply the $ADF_PATH/idf_patches/idf_v3.3_freertos.patch first[0m
[0;31mE (1980) AUDIO_THREAD: Error creating RestrictedPinnedToCore filter[0m
[0;31mE (1987) AUDIO_ELEMENT: [filter] audio_thread_create failed[0m
[0;32mI (1993) AUDIO_ELEMENT: [raw] Element task created[0m
[0;32mI (1998) AUDIO_PIPELINE: Func:audio_pipeline_run, Line:358, MEM Total:4270892 Bytes, Inter:149504 Bytes, Dram:133016 Bytes

[0m
[0;33mW (2010) AUDIO_ELEMENT: [filter] Element has not create when AUDIO_ELEMENT_RESUME[0m
[0;32mI (2010) AUDIO_ELEMENT: [i2s] AEL_MSG_CMD_RESUME,state:1[0m
[0;31mE (2019) AUDIO_PIPELINE: audio_pipeline_resume failed[0m
[0;32mI (2025) I2S_STREAM: AUDIO_STREAM_READER,Rate:48000,ch:2[0m
[0;33mW (2030) AUDIO_PIPELINE: Without stop, st:6[0m
[0;32mI (2038) I2S: APLL: Req RATE: 48000, real rate: 47999.961, BITS: 16, CLKM: 1, BCK_M: 8, MCLK: 12287990.000, SCLK: 1535998.750000, diva: 1, divb: 0[0m
[0;33mW (2041) AUDIO_PIPELINE: Without wait stop, st:6[0m
[0;32mI (2068) AUDIO_ELEMENT: [i2s] Element task destroyed[0m
[0;33mW (2068) AUDIO_ELEMENT: [filter] Element has not create when AUDIO_ELEMENT_TERMINATE[0m
[0;32mI (2074) DUEROS: Recorder has been created[0m
Quantized wakeNet5: wakeNet5_v1_nihaoxiaozhi_6_0.983_0.95, mode:0 (Nov 20 2019 14:34:43)
[0;32mI (2087) REC_ENG: ESP SR Engine, chunksize is 480锛? FRAME_SIZE:960, frequency:16000[0m
[0;31mE (2095) REC_ENG: Recorder Engine Running ..., vad_window=9, wakeup=10000 ms, vad_off=800 ms, threshold=90 ms, sensitivity=0[0m
[0;32mI (2107) REC_ENG: state idle[0m
[0;32mI (2191) event: sta ip: 192.168.0.103, mask: 255.255.255.0, gw: 192.168.0.1[0m
[0;32mI (2192) WIFI_SERV: Got ip:192.168.0.103[0m
[0;33mW (2193) WIFI_SERV: STATE type:2, pdata:0x0, len:0[0m
[0;32mI (2215) DUEROS: PERIPH_WIFI_CONNECTED [213][0m
[0;31mE (2215) DUEROS: Recv Que DUER_CMD_LOGIN[0m
[0;32mI (2216) DUEROS: duer_start, len:1470
{"configures":"{}","bindToken":"d355efa997ebf4d24149eafdddef3577","coapPort":443,"token":"PQS5sVPRhX6iCP4XkYUkMbx8UJjuULdj","serverAddr":"device.iot.baidu.com","lwm2mPort":443,"uuid":"2055000000000a","rsaCaCrt":"-----BEGIN CERTIFICATE-----\nMIIDUDCCAjgCCQCmVPUErMYmCjANBgkqhkiG9w0BAQUFADBqMQswCQYDVQQGEwJD\nTjETMBEGA1UECAwKU29tZS1TdGF0ZTEOMAwGA1UECgwFYmFpZHUxGDAWBgNVBAMM\nDyouaW90LmJhaWR1LmNvbTEcMBoGCSqGSIb3DQEJARYNaW90QGJhaWR1LmNvbTAe\nFw0xNjAzMTEwMzMwNDlaFw0yNjAzMDkwMzMwNDlaMGoxCzAJBgNVBAYTAkNOMRMw\nEQYDVQQIDApTb21lLVN0YXRlMQ4wDAYDVQQKDAViYWlkdTEYMBYGA1UEAwwPKi5p\nb3QuYmFpZHUuY29tMRwwGgYJKoZIhvcNAQkBFg1pb3RAYmFpZHUuY29tMIIBIjAN\nBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAtbhIeiN7pznzuMwsLKQj2xB02+51\nOvCJ5d116ZFLjecp9qtllqOfN7bm+AJa5N2aAHJtsetcTHMitY4dtGmOpw4dlGqx\nluoz50kWJWQjVR+z6DLPnGE4uELOS8vbKHUoYPPQTT80eNVnl9S9h/l7DcjEAJYC\nIYJbf6+K9x+Ti9VRChvWcvgZQHMRym9j1g/7CKGMCIwkC+6ihkGD/XG40r7KRCyH\nbD53KnBjBO9FH4IL3rGlZWKWzMw3zC6RTS2ekfEsgAtYDvROKd4rNs+uDU9xaBLO\ndXTl5uxgudH2VnVzWtj09OUbBtXcQFD2IhmOl20BrckYul+HEIMR0oDibwIDAQAB\nMA0GCSqGSIb3DQEBBQUAA4IBAQCzTTH91jNh/uYBEFekSVNg1h1kPSujlwEDDf/W\npjqPJPqrZvW0w0cmYsYibNDy985JB87MJMfJVESG/v0Y/YbvcnRoi5gAenWXQNL4\nh2hf08A5wEQfLO/EaD1GTH3OIierKYZ6GItGrz4uFKHV5fTMiflABCdu37ALGjrA\nrIjwjxQG6WwLr9468hkKrWNG3dMBHKvmqO8x42sZOFRJMkqBbKzaBd1uW4xY5XwM\nS1QX56tVrgO0A3S+4dEg5uiLVN4YVP/Vqh4SMtYkL7ZZiZAxD9GtNnhRyFsWlC2r\nOVSdXs1ttZxEaEBGUl7tgsBte556BIvufZX+BXGyycVJdBu3\n-----END CERTIFICATE-----\n","macId":"","version":15145}[0m
I (2212,tid:3ffc4628) lightduer_engine.c( 220):duer_engine_start, g_handler:3F808AF4, length:1470, profile:3F80D3D0
[0;33mW (2347) DUEROS: duer_callback: type:0, source:0x3f807b64 data:2, data_len:0[0m
I (2226,tid:3ffc4628) lightduer_ca_conf.c(  38):    duer_conf_get_string: uuid = 2055000000000a
I (2238,tid:3ffc4628) lightduer_ca_conf.c(  38):    duer_conf_get_string: serverAddr = device.iot.baidu.com
I (2272,tid:3ffc4628) baidu_ca_socket_adp.c( 134):DNS lookup succeeded. IP=220.181.107.198
I (2325,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
W (2325,tid:3ffc4628) lightduer_events.c(  80):[lightduer_ca] <== event end = 400FB394, timespent = 113
I (3122,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
W (3122,tid:3ffc4628) lightduer_events.c(  80):[lightduer_ca] <== event end = 400FB528, timespent = 744
I (3129,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3137,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3146,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3154,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3163,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3171,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3179,tid:3ffc4628) lightduer_engine.c( 220):duer_engine_start, g_handler:3F808AF4, length:0, profile:00000000
I (3189,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
W (3236,tid:3ffc4628) lightduer_coap.c( 532):duer_coap_nsdl_tx: sent = 0
I (3238,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3243,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3249,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3258,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (3266,tid:3ffc4628) lightduer_connagent.c( 198):will start latter(DUER_ERR_TRANS_WOULD_BLOCK)
I (4067,tid:3ffc4628) lightduer_connagent.c( 177):connect started!
I (4068,tid:3ffc4628) lightduer_voice.c( 697):Mutex initializing
I (4069,tid:3ffc4628) lightduer_ds_log_cache.c(  67):no cache report
[0;31mE (4208) DUEROS: event: 0[0m
[0;32mI (4211) DUEROS: duer_dcs_init[0m
I (4082,tid:3ffc4628) lightduer_dcs_router.c( 283):namespace: ai.dueros.private.protocol
I (4088,tid:3ffc4628) lightduer_dcs_router.c( 283):namespace: ai.dueros.device_interface.screen_extended_card
I (4099,tid:3ffc4628) lightduer_dcs_router.c( 283):namespace: ai.dueros.device_interface.system
I (4107,tid:3ffc4628) lightduer_dcs_router.c( 283):namespace: ai.dueros.device_interface.voice_input
I (4115,tid:3ffc4628) lightduer_dcs_router.c( 283):namespace: ai.dueros.device_interface.voice_output
I (4124,tid:3ffc4628) lightduer_dcs_router.c( 283):namespace: ai.dueros.device_interface.speaker_controller
I (4134,tid:3ffc4628) lightduer_dcs_router.c( 283):namespace: ai.dueros.device_interface.audio_player
[0;32mI (4277) AUDIO_WRAPPER: duer_dcs_get_speaker_state[0m
[0;31mE (4287) DUEROS: event: DUER_EVENT_STARTED[0m
W (4153,tid:3ffc4628) lightduer_events.c(  80):[lightduer_ca] <== event end = 400FB528, timespent = 90
[0;32mI (4288) DUEROS: Dueros DUER_CMD_CONNECTED, duer_state:2[0m
I (4163,tid:3ffc4628) lightduer_connagent.c( 212):add resource successfully!!
[0;33mW (4304) DUEROS: duer_callback: type:0, source:0x3f807b64 data:3, data_len:0[0m
I (4177,tid:3ffc4628) lightduer_connagent.c( 212):add resource successfully!!
W (4189,tid:3ffc4628) lightduer_engine.c( 634):data cache has not sent, pending..., dcache_len:1, qcache_len:4
W (4201,tid:3ffc4628) lightduer_system_info.c( 306):Undefined memory type, 0
E (4207,tid:3ffc4628) lightduer_system_info.c( 389):Sys Info: Get disk info failed

看了论坛里各位的配置,都是按照相应配置弄的,怎么会语音没反应,试了另外几个语音的例程也不行,播放MP3例程倒是没问题。
请教下开发者朋友是否遇到过这个状况?

离线

#2 2020-05-15 09:41:09

物联小白
会员
注册时间: 2018-05-17
已发帖子: 19
积分: 19

Re: ESP32-LyraT DuerOS例程运行语音没反应

先检查硬件有没有问题, 喇叭,功放, 声卡芯片, 都没问题的话, 用逻辑分析仪怼 I2S信号线看下有没有数据。

离线

楼主 #3 2020-05-15 23:29:22

xjp13
会员
注册时间: 2020-05-15
已发帖子: 3
积分: 3

Re: ESP32-LyraT DuerOS例程运行语音没反应

问题解决了,根据官方论坛上一个叫“超喜欢嵌入式的70后老猿人”帮助,发现下面的错误、:
AUDIO_THREAD: Not found right xTaskCreateRestrictedPinnedToCore. Please apply the $ADF_PATH/idf_patches/idf_v3.3_freertos.patch first
AUDIO_THREAD: Error creating RestrictedPinnedToCore filter
AUDIO_ELEMENT: [filter] audio_thread_create failed
这是因为目前的ADFv2.0和自带的IDFv3.3.2-107-g722043f73不匹配,FreeRTOS的task.c有缺失。
替换掉此路径下的task.h:\ components \ freertos \ include \ freertos   
和此路径下的task.c  :\ components \ freertos
注意替换的是IDFv3.3.2内的组件目录
https://pan.baidu.com/s/12MUUFKmUwx9sUrEwnG4ljQ/
提取码:gqo3

离线

#4 2020-05-16 08:14:21

哇酷小二
wechat微信:whycan_cn
所在地: 你猜
注册时间: 2020-04-22
已发帖子: 3,378
积分: 1902
个人网站

Re: ESP32-LyraT DuerOS例程运行语音没反应

xjp13 说:

问题解决了,根据官方论坛上一个叫“超喜欢嵌入式的70后老猿人”帮助,发现下面的错误、:
AUDIO_THREAD: Not found right xTaskCreateRestrictedPinnedToCore. Please apply the $ADF_PATH/idf_patches/idf_v3.3_freertos.patch first
AUDIO_THREAD: Error creating RestrictedPinnedToCore filter
AUDIO_ELEMENT: [filter] audio_thread_create failed
这是因为目前的ADFv2.0和自带的IDFv3.3.2-107-g722043f73不匹配,FreeRTOS的task.c有缺失。
替换掉此路径下的task.h:\ components \ freertos \ include \ freertos   
和此路径下的task.c  :\ components \ freertos
注意替换的是IDFv3.3.2内的组件目录
https://pan.baidu.com/s/12MUUFKmUwx9sUrEwnG4ljQ/
提取码:gqo3

感谢楼主分享, 我顺手传上来了:

IDF3.3.2-task/task.h

/*
    FreeRTOS V8.2.0 - Copyright (C) 2015 Real Time Engineers Ltd.
    All rights reserved

    VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.

    This file is part of the FreeRTOS distribution.

    FreeRTOS is free software; you can redistribute it and/or modify it under
    the terms of the GNU General Public License (version 2) as published by the
    Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.

	***************************************************************************
    >>!   NOTE: The modification to the GPL is included to allow you to     !<<
    >>!   distribute a combined work that includes FreeRTOS without being   !<<
    >>!   obliged to provide the source code for proprietary components     !<<
    >>!   outside of the FreeRTOS kernel.                                   !<<
	***************************************************************************

    FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
    FOR A PARTICULAR PURPOSE.  Full license text is available on the following
    link: http://www.freertos.org/a00114.html

    ***************************************************************************
     *                                                                       *
     *    FreeRTOS provides completely free yet professionally developed,    *
     *    robust, strictly quality controlled, supported, and cross          *
     *    platform software that is more than just the market leader, it     *
     *    is the industry's de facto standard.                               *
     *                                                                       *
     *    Help yourself get started quickly while simultaneously helping     *
     *    to support the FreeRTOS project by purchasing a FreeRTOS           *
     *    tutorial book, reference manual, or both:                          *
     *    http://www.FreeRTOS.org/Documentation                              *
     *                                                                       *
    ***************************************************************************

    http://www.FreeRTOS.org/FAQHelp.html - Having a problem?  Start by reading
	the FAQ page "My application does not run, what could be wrong?".  Have you
	defined configASSERT()?

	http://www.FreeRTOS.org/support - In return for receiving this top quality
	embedded software for free we request you assist our global community by
	participating in the support forum.

	http://www.FreeRTOS.org/training - Investing in training allows your team to
	be as productive as possible as early as possible.  Now you can receive
	FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
	Ltd, and the world's leading authority on the world's leading RTOS.

    http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
    including FreeRTOS+Trace - an indispensable productivity tool, a DOS
    compatible FAT file system, and our tiny thread aware UDP/IP stack.

    http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
    Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.

    http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
    Integrity Systems ltd. to sell under the OpenRTOS brand.  Low cost OpenRTOS
    licenses offer ticketed support, indemnification and commercial middleware.

    http://www.SafeRTOS.com - High Integrity Systems also provide a safety
    engineered and independently SIL3 certified version for use in safety and
    mission critical applications that require provable dependability.

    1 tab == 4 spaces!
*/


#ifndef INC_TASK_H
#define INC_TASK_H

#ifndef INC_FREERTOS_H
	#error "include FreeRTOS.h must appear in source files before include task.h"
#endif

#include <limits.h>

#include "list.h"
#include "portmacro.h"

#ifdef __cplusplus
extern "C" {
#endif

/*-----------------------------------------------------------
 * MACROS AND DEFINITIONS
 *----------------------------------------------------------*/

#define tskKERNEL_VERSION_NUMBER "V8.2.0"
#define tskKERNEL_VERSION_MAJOR 8
#define tskKERNEL_VERSION_MINOR 2
#define tskKERNEL_VERSION_BUILD 0

/**
 * @brief Argument of xTaskCreatePinnedToCore indicating that task has no affinity
 */
#define tskNO_AFFINITY INT_MAX

/**
 * task. h
 *
 * Type by which tasks are referenced.  For example, a call to xTaskCreate
 * returns (via a pointer parameter) an TaskHandle_t variable that can then
 * be used as a parameter to vTaskDelete to delete the task.
 *
 * \ingroup Tasks
 */
typedef void * TaskHandle_t;

/**
 * Defines the prototype to which the application task hook function must
 * conform.
 */
typedef BaseType_t (*TaskHookFunction_t)( void * );

/** Task states returned by eTaskGetState. */
typedef enum
{
	eRunning = 0,	/*!< A task is querying the state of itself, so must be running. */
	eReady,			/*!< The task being queried is in a read or pending ready list. */
	eBlocked,		/*!< The task being queried is in the Blocked state. */
	eSuspended,		/*!< The task being queried is in the Suspended state, or is in the Blocked state with an infinite time out. */
	eDeleted		/*!< The task being queried has been deleted, but its TCB has not yet been freed. */
} eTaskState;

/** Actions that can be performed when vTaskNotify() is called. */
typedef enum
{
	eNoAction = 0,				/*!< Notify the task without updating its notify value. */
	eSetBits,					/*!< Set bits in the task's notification value. */
	eIncrement,					/*!< Increment the task's notification value. */
	eSetValueWithOverwrite,		/*!< Set the task's notification value to a specific value even if the previous value has not yet been read by the task. */
	eSetValueWithoutOverwrite	/*!< Set the task's notification value if the previous value has been read by the task. */
} eNotifyAction;

/** @cond */
/**
 * Used internally only.
 */
typedef struct xTIME_OUT
{
	BaseType_t xOverflowCount;
	TickType_t xTimeOnEntering;
} TimeOut_t;

/**
 * Defines the memory ranges allocated to the task when an MPU is used.
 */
typedef struct xMEMORY_REGION
{
	void *pvBaseAddress;
	uint32_t ulLengthInBytes;
	uint32_t ulParameters;
} MemoryRegion_t;

/**
 * Parameters required to create an MPU protected task.
 */
typedef struct xTASK_PARAMETERS
{
	TaskFunction_t pvTaskCode;
	const char * const pcName;	/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
	uint32_t usStackDepth;
	void *pvParameters;
	UBaseType_t uxPriority;
	StackType_t *puxStackBuffer;
	MemoryRegion_t xRegions[ portNUM_CONFIGURABLE_REGIONS ];
} TaskParameters_t;
/** @endcond */

/**
 *  Used with the uxTaskGetSystemState() function to return the state of each task in the system.
*/
typedef struct xTASK_STATUS
{
	TaskHandle_t xHandle;			/*!< The handle of the task to which the rest of the information in the structure relates. */
	const char *pcTaskName;			/*!< A pointer to the task's name.  This value will be invalid if the task was deleted since the structure was populated! */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
	UBaseType_t xTaskNumber;		/*!< A number unique to the task. */
	eTaskState eCurrentState;		/*!< The state in which the task existed when the structure was populated. */
	UBaseType_t uxCurrentPriority;	/*!< The priority at which the task was running (may be inherited) when the structure was populated. */
	UBaseType_t uxBasePriority;		/*!< The priority to which the task will return if the task's current priority has been inherited to avoid unbounded priority inversion when obtaining a mutex.  Only valid if configUSE_MUTEXES is defined as 1 in FreeRTOSConfig.h. */
	uint32_t ulRunTimeCounter;		/*!< The total run time allocated to the task so far, as defined by the run time stats clock.  See http://www.freertos.org/rtos-run-time-stats.html.  Only valid when configGENERATE_RUN_TIME_STATS is defined as 1 in FreeRTOSConfig.h. */
	StackType_t *pxStackBase;		/*!< Points to the lowest address of the task's stack area. */
	uint32_t usStackHighWaterMark;	/*!< The minimum amount of stack space that has remained for the task since the task was created.  The closer this value is to zero the closer the task has come to overflowing its stack. */
#if configTASKLIST_INCLUDE_COREID
	BaseType_t xCoreID;				/*!< Core this task is pinned to. This field is present if CONFIG_FREERTOS_VTASKLIST_INCLUDE_COREID is set. */
#endif
} TaskStatus_t;

/**
 * Used with the uxTaskGetSnapshotAll() function to save memory snapshot of each task in the system.
 * We need this struct because TCB_t is defined (hidden) in tasks.c.
 */
typedef struct xTASK_SNAPSHOT
{
	void        *pxTCB;         /*!< Address of task control block. */
	StackType_t *pxTopOfStack;  /*!< Points to the location of the last item placed on the tasks stack. */
	StackType_t *pxEndOfStack;  /*!< Points to the end of the stack. pxTopOfStack < pxEndOfStack, stack grows hi2lo
									pxTopOfStack > pxEndOfStack, stack grows lo2hi*/
} TaskSnapshot_t;

/**
 * Possible return values for eTaskConfirmSleepModeStatus().
 */
typedef enum
{
	eAbortSleep = 0,		/*!< A task has been made ready or a context switch pended since portSUPPORESS_TICKS_AND_SLEEP() was called - abort entering a sleep mode. */
	eStandardSleep,			/*!< Enter a sleep mode that will not last any longer than the expected idle time. */
	eNoTasksWaitingTimeout	/*!< No tasks are waiting for a timeout so it is safe to enter a sleep mode that can only be exited by an external interrupt. */
} eSleepModeStatus;


/**
 * Defines the priority used by the idle task.  This must not be modified.
 *
 * \ingroup TaskUtils
 */
#define tskIDLE_PRIORITY			( ( UBaseType_t ) 0U )

/**
 * task. h
 *
 * Macro for forcing a context switch.
 *
 * \ingroup SchedulerControl
 */
#define taskYIELD()					portYIELD()

/**
 * task. h
 *
 * Macro to mark the start of a critical code region.  Preemptive context
 * switches cannot occur when in a critical region.
 *
 * @note This may alter the stack (depending on the portable implementation)
 * so must be used with care!
 *
 * \ingroup SchedulerControl
 */
#ifdef _ESP_FREERTOS_INTERNAL
#define taskENTER_CRITICAL(mux)		portENTER_CRITICAL(mux)
#else
#define taskENTER_CRITICAL(mux) _Pragma("GCC warning \"'taskENTER_CRITICAL(mux)' is deprecated in ESP-IDF, consider using 'portENTER_CRITICAL(mux)'\"") portENTER_CRITICAL(mux)
#endif
#define taskENTER_CRITICAL_ISR(mux)		portENTER_CRITICAL_ISR(mux)

/**
 * task. h
 *
 * Macro to mark the end of a critical code region.  Preemptive context
 * switches cannot occur when in a critical region.
 *
 * @note This may alter the stack (depending on the portable implementation)
 * so must be used with care!
 *
 * \ingroup SchedulerControl
 */
#ifdef _ESP_FREERTOS_INTERNAL
#define taskEXIT_CRITICAL(mux)			portEXIT_CRITICAL(mux)
#else
#define taskEXIT_CRITICAL(mux) _Pragma("GCC warning \"'taskEXIT_CRITICAL(mux)' is deprecated in ESP-IDF, consider using 'portEXIT_CRITICAL(mux)'\"") portEXIT_CRITICAL(mux)
#endif
#define taskEXIT_CRITICAL_ISR(mux)		portEXIT_CRITICAL_ISR(mux)

/**
 * task. h
 *
 * Macro to disable all maskable interrupts.
 *
 * \ingroup SchedulerControl
 */
#define taskDISABLE_INTERRUPTS()	portDISABLE_INTERRUPTS()

/**
 * task. h
 *
 * Macro to enable microcontroller interrupts.
 *
 * \ingroup SchedulerControl
 */
#define taskENABLE_INTERRUPTS()		portENABLE_INTERRUPTS()

/* Definitions returned by xTaskGetSchedulerState().  taskSCHEDULER_SUSPENDED is
0 to generate more optimal code when configASSERT() is defined as the constant
is used in assert() statements. */
#define taskSCHEDULER_SUSPENDED		( ( BaseType_t ) 0 )
#define taskSCHEDULER_NOT_STARTED	( ( BaseType_t ) 1 )
#define taskSCHEDULER_RUNNING		( ( BaseType_t ) 2 )


/*-----------------------------------------------------------
 * TASK CREATION API
 *----------------------------------------------------------*/

/**
 * Create a new task with a specified affinity.
 *
 * This function is similar to xTaskCreate, but allows setting task affinity
 * in SMP system.
 *
 * @param pvTaskCode Pointer to the task entry function.  Tasks
 * must be implemented to never return (i.e. continuous loop).
 *
 * @param pcName A descriptive name for the task.  This is mainly used to
 * facilitate debugging.  Max length defined by configMAX_TASK_NAME_LEN - default
 * is 16.
 *
 * @param usStackDepth The size of the task stack specified as the number of
 * bytes. Note that this differs from vanilla FreeRTOS.
 *
 * @param pvParameters Pointer that will be used as the parameter for the task
 * being created.
 *
 * @param uxPriority The priority at which the task should run.  Systems that
 * include MPU support can optionally create tasks in a privileged (system)
 * mode by setting bit portPRIVILEGE_BIT of the priority parameter.  For
 * example, to create a privileged task at priority 2 the uxPriority parameter
 * should be set to ( 2 | portPRIVILEGE_BIT ).
 *
 * @param pvCreatedTask Used to pass back a handle by which the created task
 * can be referenced.
 *
 * @param xCoreID If the value is tskNO_AFFINITY, the created task is not
 * pinned to any CPU, and the scheduler can run it on any core available.
 * Other values indicate the index number of the CPU which the task should
 * be pinned to. Specifying values larger than (portNUM_PROCESSORS - 1) will
 * cause the function to fail.
 *
 * @return pdPASS if the task was successfully created and added to a ready
 * list, otherwise an error code defined in the file projdefs.h
 *
 * \ingroup Tasks
 */
#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
	BaseType_t xTaskCreatePinnedToCore(	TaskFunction_t pvTaskCode,
										const char * const pcName,
										const uint32_t usStackDepth,
										void * const pvParameters,
										UBaseType_t uxPriority,
										TaskHandle_t * const pvCreatedTask,
										const BaseType_t xCoreID);

#endif

/**
 * Create a new task and add it to the list of tasks that are ready to run.
 *
 * Internally, within the FreeRTOS implementation, tasks use two blocks of
 * memory.  The first block is used to hold the task's data structures.  The
 * second block is used by the task as its stack.  If a task is created using
 * xTaskCreate() then both blocks of memory are automatically dynamically
 * allocated inside the xTaskCreate() function.  (see
 * http://www.freertos.org/a00111.html).  If a task is created using
 * xTaskCreateStatic() then the application writer must provide the required
 * memory.  xTaskCreateStatic() therefore allows a task to be created without
 * using any dynamic memory allocation.
 *
 * See xTaskCreateStatic() for a version that does not use any dynamic memory
 * allocation.
 *
 * xTaskCreate() can only be used to create a task that has unrestricted
 * access to the entire microcontroller memory map.  Systems that include MPU
 * support can alternatively create an MPU constrained task using
 * xTaskCreateRestricted().
 *
 * @param pvTaskCode Pointer to the task entry function.  Tasks
 * must be implemented to never return (i.e. continuous loop).
 *
 * @param pcName A descriptive name for the task.  This is mainly used to
 * facilitate debugging.  Max length defined by configMAX_TASK_NAME_LEN - default
 * is 16.
 *
 * @param usStackDepth The size of the task stack specified as the number of
 * bytes. Note that this differs from vanilla FreeRTOS.
 *
 * @param pvParameters Pointer that will be used as the parameter for the task
 * being created.
 *
 * @param uxPriority The priority at which the task should run.  Systems that
 * include MPU support can optionally create tasks in a privileged (system)
 * mode by setting bit portPRIVILEGE_BIT of the priority parameter.  For
 * example, to create a privileged task at priority 2 the uxPriority parameter
 * should be set to ( 2 | portPRIVILEGE_BIT ).
 *
 * @param pvCreatedTask Used to pass back a handle by which the created task
 * can be referenced.
 *
 * @return pdPASS if the task was successfully created and added to a ready
 * list, otherwise an error code defined in the file projdefs.h
 *
 * @note If program uses thread local variables (ones specified with "__thread" keyword)
 * then storage for them will be allocated on the task's stack.
 *
 * Example usage:
 * @code{c}
 *  // Task to be created.
 *  void vTaskCode( void * pvParameters )
 *  {
 *   for( ;; )
 *   {
 *       // Task code goes here.
 *   }
 *  }
 *
 *  // Function that creates a task.
 *  void vOtherFunction( void )
 *  {
 *  static uint8_t ucParameterToPass;
 *  TaskHandle_t xHandle = NULL;
 *
 *   // Create the task, storing the handle.  Note that the passed parameter ucParameterToPass
 *   // must exist for the lifetime of the task, so in this case is declared static.  If it was just an
 *   // an automatic stack variable it might no longer exist, or at least have been corrupted, by the time
 *   // the new task attempts to access it.
 *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, &ucParameterToPass, tskIDLE_PRIORITY, &xHandle );
 *      configASSERT( xHandle );
 *
 *   // Use the handle to delete the task.
 *      if( xHandle != NULL )
 *      {
 *       vTaskDelete( xHandle );
 *      }
 *  }
 * @endcode
 * \ingroup Tasks
 */

#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )

	static inline IRAM_ATTR BaseType_t xTaskCreate(
			TaskFunction_t pvTaskCode,
			const char * const pcName,
			const uint32_t usStackDepth,
			void * const pvParameters,
			UBaseType_t uxPriority,
			TaskHandle_t * const pvCreatedTask)
	{
		return xTaskCreatePinnedToCore( pvTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pvCreatedTask, tskNO_AFFINITY );
	}

#endif




/**
 * Create a new task with a specified affinity.
 *
 * This function is similar to xTaskCreateStatic, but allows specifying
 * task affinity in an SMP system.
 *
 * @param pvTaskCode Pointer to the task entry function.  Tasks
 * must be implemented to never return (i.e. continuous loop).
 *
 * @param pcName A descriptive name for the task.  This is mainly used to
 * facilitate debugging.  The maximum length of the string is defined by
 * configMAX_TASK_NAME_LEN in FreeRTOSConfig.h.
 *
 * @param ulStackDepth The size of the task stack specified as the number of
 * bytes. Note that this differs from vanilla FreeRTOS.
 *
 * @param pvParameters Pointer that will be used as the parameter for the task
 * being created.
 *
 * @param uxPriority The priority at which the task will run.
 *
 * @param pxStackBuffer Must point to a StackType_t array that has at least
 * ulStackDepth indexes - the array will then be used as the task's stack,
 * removing the need for the stack to be allocated dynamically.
 *
 * @param pxTaskBuffer Must point to a variable of type StaticTask_t, which will
 * then be used to hold the task's data structures, removing the need for the
 * memory to be allocated dynamically.
 *
 * @param xCoreID If the value is tskNO_AFFINITY, the created task is not
 * pinned to any CPU, and the scheduler can run it on any core available.
 * Other values indicate the index number of the CPU which the task should
 * be pinned to. Specifying values larger than (portNUM_PROCESSORS - 1) will
 * cause the function to fail.
 *
 * @return If neither pxStackBuffer or pxTaskBuffer are NULL, then the task will
 * be created and pdPASS is returned.  If either pxStackBuffer or pxTaskBuffer
 * are NULL then the task will not be created and
 * errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY is returned.
 *
 * \ingroup Tasks
 */
#if( configSUPPORT_STATIC_ALLOCATION == 1 )
	TaskHandle_t xTaskCreateStaticPinnedToCore(	TaskFunction_t pvTaskCode,
												const char * const pcName,
												const uint32_t ulStackDepth,
												void * const pvParameters,
												UBaseType_t uxPriority,
												StackType_t * const pxStackBuffer,
												StaticTask_t * const pxTaskBuffer,
												const BaseType_t xCoreID );
#endif /* configSUPPORT_STATIC_ALLOCATION */

/**
 * Create a new task and add it to the list of tasks that are ready to run.
 *
 * Internally, within the FreeRTOS implementation, tasks use two blocks of
 * memory.  The first block is used to hold the task's data structures.  The
 * second block is used by the task as its stack.  If a task is created using
 * xTaskCreate() then both blocks of memory are automatically dynamically
 * allocated inside the xTaskCreate() function.  (see
 * http://www.freertos.org/a00111.html).  If a task is created using
 * xTaskCreateStatic() then the application writer must provide the required
 * memory.  xTaskCreateStatic() therefore allows a task to be created without
 * using any dynamic memory allocation.
 *
 * @param pvTaskCode Pointer to the task entry function.  Tasks
 * must be implemented to never return (i.e. continuous loop).
 *
 * @param pcName A descriptive name for the task.  This is mainly used to
 * facilitate debugging.  The maximum length of the string is defined by
 * configMAX_TASK_NAME_LEN in FreeRTOSConfig.h.
 *
 * @param ulStackDepth The size of the task stack specified as the number of
 * bytes. Note that this differs from vanilla FreeRTOS.
 *
 * @param pvParameters Pointer that will be used as the parameter for the task
 * being created.
 *
 * @param uxPriority The priority at which the task will run.
 *
 * @param pxStackBuffer Must point to a StackType_t array that has at least
 * ulStackDepth indexes - the array will then be used as the task's stack,
 * removing the need for the stack to be allocated dynamically.
 *
 * @param pxTaskBuffer Must point to a variable of type StaticTask_t, which will
 * then be used to hold the task's data structures, removing the need for the
 * memory to be allocated dynamically.
 *
 * @return If neither pxStackBuffer or pxTaskBuffer are NULL, then the task will
 * be created and pdPASS is returned.  If either pxStackBuffer or pxTaskBuffer
 * are NULL then the task will not be created and
 * errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY is returned.
 *
 * @note If program uses thread local variables (ones specified with "__thread" keyword)
 * then storage for them will be allocated on the task's stack.
 *
 * Example usage:
 * @code{c}
 *
 *     // Dimensions the buffer that the task being created will use as its stack.
 *     // NOTE:  This is the number of bytes the stack will hold, not the number of
 *     // words as found in vanilla FreeRTOS.
 *     #define STACK_SIZE 200
 *
 *     // Structure that will hold the TCB of the task being created.
 *     StaticTask_t xTaskBuffer;
 *
 *     // Buffer that the task being created will use as its stack.  Note this is
 *     // an array of StackType_t variables.  The size of StackType_t is dependent on
 *     // the RTOS port.
 *     StackType_t xStack[ STACK_SIZE ];
 *
 *     // Function that implements the task being created.
 *     void vTaskCode( void * pvParameters )
 *     {
 *         // The parameter value is expected to be 1 as 1 is passed in the
 *         // pvParameters value in the call to xTaskCreateStatic().
 *         configASSERT( ( uint32_t ) pvParameters == 1UL );
 *
 *         for( ;; )
 *         {
 *             // Task code goes here.
 *         }
 *     }
 *
 *     // Function that creates a task.
 *     void vOtherFunction( void )
 *     {
 *         TaskHandle_t xHandle = NULL;
 *
 *         // Create the task without using any dynamic memory allocation.
 *         xHandle = xTaskCreateStatic(
 *                       vTaskCode,       // Function that implements the task.
 *                       "NAME",          // Text name for the task.
 *                       STACK_SIZE,      // Stack size in bytes, not words.
 *                       ( void * ) 1,    // Parameter passed into the task.
 *                       tskIDLE_PRIORITY,// Priority at which the task is created.
 *                       xStack,          // Array to use as the task's stack.
 *                       &xTaskBuffer );  // Variable to hold the task's data structure.
 *
 *         // puxStackBuffer and pxTaskBuffer were not NULL, so the task will have
 *         // been created, and xHandle will be the task's handle.  Use the handle
 *         // to suspend the task.
 *         vTaskSuspend( xHandle );
 *     }
 * @endcode
 * \ingroup Tasks
 */

#if( configSUPPORT_STATIC_ALLOCATION == 1 )
	static inline IRAM_ATTR TaskHandle_t xTaskCreateStatic(
			TaskFunction_t pvTaskCode,
			const char * const pcName,
			const uint32_t ulStackDepth,
			void * const pvParameters,
			UBaseType_t uxPriority,
			StackType_t * const pxStackBuffer,
			StaticTask_t * const pxTaskBuffer)
	{
		return xTaskCreateStaticPinnedToCore( pvTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, pxStackBuffer, pxTaskBuffer, tskNO_AFFINITY );
	}
#endif /* configSUPPORT_STATIC_ALLOCATION */

/** @cond */
/**
 * xTaskCreateRestricted() should only be used in systems that include an MPU
 * implementation.
 *
 * Create a new task and add it to the list of tasks that are ready to run.
 * The function parameters define the memory regions and associated access
 * permissions allocated to the task.
 *
 * @param pxTaskDefinition Pointer to a structure that contains a member
 * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
 * documentation) plus an optional stack buffer and the memory region
 * definitions.
 *
 * @param pxCreatedTask Used to pass back a handle by which the created task
 * can be referenced.
 *
 * @return pdPASS if the task was successfully created and added to a ready
 * list, otherwise an error code defined in the file projdefs.h
 *
 * Example usage:
 * @code{c}
 * // Create an TaskParameters_t structure that defines the task to be created.
 * static const TaskParameters_t xCheckTaskParameters =
 * {
 * 	vATask,		// pvTaskCode - the function that implements the task.
 * 	"ATask",	// pcName - just a text name for the task to assist debugging.
 * 	100,		// usStackDepth	- the stack size DEFINED IN BYTES.
 * 	NULL,		// pvParameters - passed into the task function as the function parameters.
 * 	( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state.
 * 	cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.
 *
 * 	// xRegions - Allocate up to three separate memory regions for access by
 * 	// the task, with appropriate access permissions.  Different processors have
 * 	// different memory alignment requirements - refer to the FreeRTOS documentation
 * 	// for full information.
 * 	{
 * 		// Base address					Length	Parameters
 *         { cReadWriteArray,				32,		portMPU_REGION_READ_WRITE },
 *         { cReadOnlyArray,				32,		portMPU_REGION_READ_ONLY },
 *         { cPrivilegedOnlyAccessArray,	128,	portMPU_REGION_PRIVILEGED_READ_WRITE }
 * 	}
 * };
 *
 * int main( void )
 * {
 * TaskHandle_t xHandle;
 *
 * 	// Create a task from the const structure defined above.  The task handle
 * 	// is requested (the second parameter is not NULL) but in this case just for
 * 	// demonstration purposes as its not actually used.
 * 	xTaskCreateRestricted( &xRegTest1Parameters, &xHandle );
 *
 * 	// Start the scheduler.
 * 	vTaskStartScheduler();
 *
 * 	// Will only get here if there was insufficient memory to create the idle
 * 	// and/or timer task.
 * 	for( ;; );
 * }
 * @endcode
 * \ingroup Tasks
 */
#if( portUSING_MPU_WRAPPERS == 1 )
	BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask ) PRIVILEGED_FUNCTION;

/** @cond */
/**
 * xTaskCreateRestrictedPinnedToCore() should only be used in systems that 
 * include an MPU implementation.
 *
 * Create a new task and add it to the list of tasks that are ready to run.
 * The function parameters define the memory regions and associated access
 * permissions allocated to the task.
 *
 * @param pxTaskDefinition Pointer to a structure that contains a member
 * for each of the normal xTaskCreate() parameters (see the xTaskCreate() API
 * documentation) plus an optional stack buffer and the memory region
 * definitions.
 *
 * @param pxCreatedTask Used to pass back a handle by which the created task
 * can be referenced.
 *
 * @param xCoreID If the value is tskNO_AFFINITY, the created task is not
 * pinned to any CPU, and the scheduler can run it on any core available.
 * Other values indicate the index number of the CPU which the task should
 * be pinned to. Specifying values larger than (portNUM_PROCESSORS - 1) will
 * cause the function to fail.
 *
 * @return pdPASS if the task was successfully created and added to a ready
 * list, otherwise an error code defined in the file projdefs.h
 *
 * @endcode
 * \ingroup Tasks
 */
	BaseType_t xTaskCreateRestrictedPinnedToCore( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask, const BaseType_t xCoreID) PRIVILEGED_FUNCTION;

#endif


/**
 * Memory regions are assigned to a restricted task when the task is created by
 * a call to xTaskCreateRestricted().  These regions can be redefined using
 * vTaskAllocateMPURegions().
 *
 * @param xTask The handle of the task being updated.
 *
 * @param xRegions A pointer to an MemoryRegion_t structure that contains the
 * new memory region definitions.
 *
 * Example usage:
 *
 * @code{c}
 * // Define an array of MemoryRegion_t structures that configures an MPU region
 * // allowing read/write access for 1024 bytes starting at the beginning of the
 * // ucOneKByte array.  The other two of the maximum 3 definable regions are
 * // unused so set to zero.
 * static const MemoryRegion_t xAltRegions[ portNUM_CONFIGURABLE_REGIONS ] =
 * {
 * 	// Base address		Length		Parameters
 * 	{ ucOneKByte,		1024,		portMPU_REGION_READ_WRITE },
 * 	{ 0,				0,			0 },
 * 	{ 0,				0,			0 }
 * };
 *
 * void vATask( void *pvParameters )
 * {
 * 	// This task was created such that it has access to certain regions of
 * 	// memory as defined by the MPU configuration.  At some point it is
 * 	// desired that these MPU regions are replaced with that defined in the
 * 	// xAltRegions const struct above.  Use a call to vTaskAllocateMPURegions()
 * 	// for this purpose.  NULL is used as the task handle to indicate that this
 * 	// function should modify the MPU regions of the calling task.
 * 	vTaskAllocateMPURegions( NULL, xAltRegions );
 *
 * 	// Now the task can continue its function, but from this point on can only
 * 	// access its stack and the ucOneKByte array (unless any other statically
 * 	// defined or shared regions have been declared elsewhere).
 * }
 * @endcode
 * \ingroup Tasks
 */
void vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions ) PRIVILEGED_FUNCTION;

/** @endcond */

/**
 * Remove a task from the RTOS real time kernel's management.
 *
 * The task being deleted will be removed from all ready, blocked, suspended
 * and event lists.
 *
 * INCLUDE_vTaskDelete must be defined as 1 for this function to be available.
 * See the configuration section for more information.
 *
 * @note The idle task is responsible for freeing the kernel allocated
 * memory from tasks that have been deleted.  It is therefore important that
 * the idle task is not starved of microcontroller processing time if your
 * application makes any calls to vTaskDelete ().  Memory allocated by the
 * task code is not automatically freed, and should be freed before the task
 * is deleted.
 *
 * See the demo application file death.c for sample code that utilises
 * vTaskDelete ().
 *
 * @param xTaskToDelete The handle of the task to be deleted.  Passing NULL will
 * cause the calling task to be deleted.
 *
 * Example usage:
 * @code{c}
 *  void vOtherFunction( void )
 *  {
 *  TaskHandle_t xHandle;
 *
 * 	 // Create the task, storing the handle.
 * 	 xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
 *
 * 	 // Use the handle to delete the task.
 * 	 vTaskDelete( xHandle );
 *  }
 * @endcode
 * \ingroup Tasks
 */
void vTaskDelete( TaskHandle_t xTaskToDelete ) PRIVILEGED_FUNCTION;

/*-----------------------------------------------------------
 * TASK CONTROL API
 *----------------------------------------------------------*/

/**
 * Delay a task for a given number of ticks.
 *
 * The actual time that the task remains blocked depends on the tick rate.
 * The constant portTICK_PERIOD_MS can be used to calculate real time from
 * the tick rate - with the resolution of one tick period.
 *
 * INCLUDE_vTaskDelay must be defined as 1 for this function to be available.
 * See the configuration section for more information.
 *
 * vTaskDelay() specifies a time at which the task wishes to unblock relative to
 * the time at which vTaskDelay() is called.  For example, specifying a block
 * period of 100 ticks will cause the task to unblock 100 ticks after
 * vTaskDelay() is called.  vTaskDelay() does not therefore provide a good method
 * of controlling the frequency of a periodic task as the path taken through the
 * code, as well as other task and interrupt activity, will effect the frequency
 * at which vTaskDelay() gets called and therefore the time at which the task
 * next executes.  See vTaskDelayUntil() for an alternative API function designed
 * to facilitate fixed frequency execution.  It does this by specifying an
 * absolute time (rather than a relative time) at which the calling task should
 * unblock.
 *
 * @param xTicksToDelay The amount of time, in tick periods, that
 * the calling task should block.
 *
 * Example usage:
 * @code{c}
 *  void vTaskFunction( void * pvParameters )
 *  {
 *  // Block for 500ms.
 *  const TickType_t xDelay = 500 / portTICK_PERIOD_MS;
 *
 * 	 for( ;; )
 * 	 {
 * 		 // Simply toggle the LED every 500ms, blocking between each toggle.
 * 		 vToggleLED();
 * 		 vTaskDelay( xDelay );
 * 	 }
 *  }
 * @endcode
 * \ingroup TaskCtrl
 */
void vTaskDelay( const TickType_t xTicksToDelay ) PRIVILEGED_FUNCTION;

/**
 * Delay a task until a specified time.
 *
 * INCLUDE_vTaskDelayUntil must be defined as 1 for this function to be available.
 * See the configuration section for more information.
 *
 * This function can be used by periodic tasks to ensure a constant execution frequency.
 *
 * This function differs from vTaskDelay () in one important aspect:  vTaskDelay () will
 * cause a task to block for the specified number of ticks from the time vTaskDelay () is
 * called.  It is therefore difficult to use vTaskDelay () by itself to generate a fixed
 * execution frequency as the time between a task starting to execute and that task
 * calling vTaskDelay () may not be fixed [the task may take a different path though the
 * code between calls, or may get interrupted or preempted a different number of times
 * each time it executes].
 *
 * Whereas vTaskDelay () specifies a wake time relative to the time at which the function
 * is called, vTaskDelayUntil () specifies the absolute (exact) time at which it wishes to
 * unblock.
 *
 * The constant portTICK_PERIOD_MS can be used to calculate real time from the tick
 * rate - with the resolution of one tick period.
 *
 * @param pxPreviousWakeTime Pointer to a variable that holds the time at which the
 * task was last unblocked.  The variable must be initialised with the current time
 * prior to its first use (see the example below).  Following this the variable is
 * automatically updated within vTaskDelayUntil ().
 *
 * @param xTimeIncrement The cycle time period.  The task will be unblocked at
 * time *pxPreviousWakeTime + xTimeIncrement.  Calling vTaskDelayUntil with the
 * same xTimeIncrement parameter value will cause the task to execute with
 * a fixed interface period.
 *
 * Example usage:
 * @code{c}
 *  // Perform an action every 10 ticks.
 *  void vTaskFunction( void * pvParameters )
 *  {
 *  TickType_t xLastWakeTime;
 *  const TickType_t xFrequency = 10;
 *
 * 	 // Initialise the xLastWakeTime variable with the current time.
 * 	 xLastWakeTime = xTaskGetTickCount ();
 * 	 for( ;; )
 * 	 {
 * 		 // Wait for the next cycle.
 * 		 vTaskDelayUntil( &xLastWakeTime, xFrequency );
 *
 * 		 // Perform action here.
 * 	 }
 *  }
 * @endcode
 * \ingroup TaskCtrl
 */
void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement ) PRIVILEGED_FUNCTION;

/**
 * Obtain the priority of any task.
 *
 * INCLUDE_uxTaskPriorityGet must be defined as 1 for this function to be available.
 * See the configuration section for more information.
 *
 * @param xTask Handle of the task to be queried.  Passing a NULL
 * handle results in the priority of the calling task being returned.
 *
 * @return The priority of xTask.
 *
 * Example usage:
 * @code{c}
 *  void vAFunction( void )
 *  {
 *  TaskHandle_t xHandle;
 *
 *   // Create a task, storing the handle.
 *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
 *
 *   // ...
 *
 *   // Use the handle to obtain the priority of the created task.
 *   // It was created with tskIDLE_PRIORITY, but may have changed
 *   // it itself.
 *   if( uxTaskPriorityGet( xHandle ) != tskIDLE_PRIORITY )
 *   {
 *       // The task has changed it's priority.
 *   }
 *
 *   // ...
 *
 *   // Is our priority higher than the created task?
 *   if( uxTaskPriorityGet( xHandle ) < uxTaskPriorityGet( NULL ) )
 *   {
 *       // Our priority (obtained using NULL handle) is higher.
 *   }
 * }
 * @endcode
 * \ingroup TaskCtrl
 */
UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;

/**
 * A version of uxTaskPriorityGet() that can be used from an ISR.
 *
 * @param xTask Handle of the task to be queried.  Passing a NULL
 * handle results in the priority of the calling task being returned.
 *
 * @return The priority of xTask.
 *
 */
UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;

/**
 * Obtain the state of any task.
 *
 * States are encoded by the eTaskState enumerated type.
 *
 * INCLUDE_eTaskGetState must be defined as 1 for this function to be available.
 * See the configuration section for more information.
 *
 * @param xTask Handle of the task to be queried.
 *
 * @return The state of xTask at the time the function was called.  Note the
 * state of the task might change between the function being called, and the
 * functions return value being tested by the calling task.
 */
eTaskState eTaskGetState( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;

/**
 * Set the priority of any task.
 *
 * INCLUDE_vTaskPrioritySet must be defined as 1 for this function to be available.
 * See the configuration section for more information.
 *
 * A context switch will occur before the function returns if the priority
 * being set is higher than the currently executing task.
 *
 * @param xTask Handle to the task for which the priority is being set.
 * Passing a NULL handle results in the priority of the calling task being set.
 *
 * @param uxNewPriority The priority to which the task will be set.
 *
 * Example usage:
 * @code{c}
 *  void vAFunction( void )
 *  {
 *  TaskHandle_t xHandle;
 *
 *   // Create a task, storing the handle.
 *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
 *
 *   // ...
 *
 *   // Use the handle to raise the priority of the created task.
 *   vTaskPrioritySet( xHandle, tskIDLE_PRIORITY + 1 );
 *
 *   // ...
 *
 *   // Use a NULL handle to raise our priority to the same value.
 *   vTaskPrioritySet( NULL, tskIDLE_PRIORITY + 1 );
 *  }
 * @endcode
 * \ingroup TaskCtrl
 */
void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority ) PRIVILEGED_FUNCTION;

/**
 * Suspend a task.
 *
 * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
 * See the configuration section for more information.
 *
 * When suspended, a task will never get any microcontroller processing time,
 * no matter what its priority.
 *
 * Calls to vTaskSuspend are not accumulative -
 * i.e. calling vTaskSuspend () twice on the same task still only requires one
 * call to vTaskResume () to ready the suspended task.
 *
 * @param xTaskToSuspend Handle to the task being suspended.  Passing a NULL
 * handle will cause the calling task to be suspended.
 *
 * Example usage:
 * @code{c}
 *  void vAFunction( void )
 *  {
 *  TaskHandle_t xHandle;
 *
 *   // Create a task, storing the handle.
 *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
 *
 *   // ...
 *
 *   // Use the handle to suspend the created task.
 *   vTaskSuspend( xHandle );
 *
 *   // ...
 *
 *   // The created task will not run during this period, unless
 *   // another task calls vTaskResume( xHandle ).
 *
 *   //...
 *
 *
 *   // Suspend ourselves.
 *   vTaskSuspend( NULL );
 *
 *   // We cannot get here unless another task calls vTaskResume
 *   // with our handle as the parameter.
 *  }
 * @endcode
 * \ingroup TaskCtrl
 */
void vTaskSuspend( TaskHandle_t xTaskToSuspend ) PRIVILEGED_FUNCTION;

/**
 * Resumes a suspended task.
 *
 * INCLUDE_vTaskSuspend must be defined as 1 for this function to be available.
 * See the configuration section for more information.
 *
 * A task that has been suspended by one or more calls to vTaskSuspend ()
 * will be made available for running again by a single call to
 * vTaskResume ().
 *
 * @param xTaskToResume Handle to the task being readied.
 *
 * Example usage:
 * @code{c}
 *  void vAFunction( void )
 *  {
 *  TaskHandle_t xHandle;
 *
 *   // Create a task, storing the handle.
 *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, &xHandle );
 *
 *   // ...
 *
 *   // Use the handle to suspend the created task.
 *   vTaskSuspend( xHandle );
 *
 *   // ...
 *
 *   // The created task will not run during this period, unless
 *   // another task calls vTaskResume( xHandle ).
 *
 *   //...
 *
 *
 *   // Resume the suspended task ourselves.
 *   vTaskResume( xHandle );
 *
 *   // The created task will once again get microcontroller processing
 *   // time in accordance with its priority within the system.
 *  }
 * @endcode
 * \ingroup TaskCtrl
 */
void vTaskResume( TaskHandle_t xTaskToResume ) PRIVILEGED_FUNCTION;

/**
 * An implementation of vTaskResume() that can be called from within an ISR.
 *
 * INCLUDE_xTaskResumeFromISR must be defined as 1 for this function to be
 * available.  See the configuration section for more information.
 *
 * A task that has been suspended by one or more calls to vTaskSuspend ()
 * will be made available for running again by a single call to
 * xTaskResumeFromISR ().
 *
 * xTaskResumeFromISR() should not be used to synchronise a task with an
 * interrupt if there is a chance that the interrupt could arrive prior to the
 * task being suspended - as this can lead to interrupts being missed. Use of a
 * semaphore as a synchronisation mechanism would avoid this eventuality.
 *
 * @param xTaskToResume Handle to the task being readied.
 *
 * @return pdTRUE if resuming the task should result in a context switch,
 * otherwise pdFALSE. This is used by the ISR to determine if a context switch
 * may be required following the ISR.
 *
 * \ingroup TaskCtrl
 */
BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume ) PRIVILEGED_FUNCTION;

/*-----------------------------------------------------------
 * SCHEDULER CONTROL
 *----------------------------------------------------------*/
/** @cond */
/**
 * Starts the real time kernel tick processing.
 *
 * After calling the kernel has control over which tasks are executed and when.
 *
 * See the demo application file main.c for an example of creating
 * tasks and starting the kernel.
 *
 * Example usage:
 * @code{c}
 *  void vAFunction( void )
 *  {
 *   // Create at least one task before starting the kernel.
 *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
 *
 *   // Start the real time kernel with preemption.
 *   vTaskStartScheduler ();
 *
 *   // Will not get here unless a task calls vTaskEndScheduler ()
 *  }
 * @endcode
 *
 * \ingroup SchedulerControl
 */
void vTaskStartScheduler( void ) PRIVILEGED_FUNCTION;

/**
 * Stops the real time kernel tick.
 *
 * @note At the time of writing only the x86 real mode port, which runs on a PC
 * in place of DOS, implements this function.
 *
 * All created tasks will be automatically deleted and multitasking
 * (either preemptive or cooperative) will stop.
 * Execution then resumes from the point where vTaskStartScheduler ()
 * was called, as if vTaskStartScheduler () had just returned.
 *
 * See the demo application file main. c in the demo/PC directory for an
 * example that uses vTaskEndScheduler ().
 *
 * vTaskEndScheduler () requires an exit function to be defined within the
 * portable layer (see vPortEndScheduler () in port. c for the PC port).  This
 * performs hardware specific operations such as stopping the kernel tick.
 *
 * vTaskEndScheduler () will cause all of the resources allocated by the
 * kernel to be freed - but will not free resources allocated by application
 * tasks.
 *
 * Example usage:
 * @code{c}
 *  void vTaskCode( void * pvParameters )
 *  {
 *   for( ;; )
 *   {
 *       // Task code goes here.
 *
 *       // At some point we want to end the real time kernel processing
 *       // so call ...
 *       vTaskEndScheduler ();
 *   }
 *  }
 *
 *  void vAFunction( void )
 *  {
 *   // Create at least one task before starting the kernel.
 *   xTaskCreate( vTaskCode, "NAME", STACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
 *
 *   // Start the real time kernel with preemption.
 *   vTaskStartScheduler ();
 *
 *   // Will only get here when the vTaskCode () task has called
 *   // vTaskEndScheduler ().  When we get here we are back to single task
 *   // execution.
 *  }
 * @endcode
 * \ingroup SchedulerControl
 */
void vTaskEndScheduler( void ) PRIVILEGED_FUNCTION;

/** @endcond */

/**
 * Suspends the scheduler without disabling interrupts.
 *
 * Context switches will not occur while the scheduler is suspended.
 *
 * After calling vTaskSuspendAll () the calling task will continue to execute
 * without risk of being swapped out until a call to xTaskResumeAll () has been
 * made.
 *
 * API functions that have the potential to cause a context switch (for example,
 * vTaskDelayUntil(), xQueueSend(), etc.) must not be called while the scheduler
 * is suspended.
 *
 * Example usage:
 * @code{c}
 *  void vTask1( void * pvParameters )
 *  {
 *   for( ;; )
 *   {
 *       // Task code goes here.
 *
 *       // ...
 *
 *       // At some point the task wants to perform a long operation during
 *       // which it does not want to get swapped out.  It cannot use
 *       // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
 *       // operation may cause interrupts to be missed - including the
 *       // ticks.
 *
 *       // Prevent the real time kernel swapping out the task.
 *       vTaskSuspendAll ();
 *
 *       // Perform the operation here.  There is no need to use critical
 *       // sections as we have all the microcontroller processing time.
 *       // During this time interrupts will still operate and the kernel
 *       // tick count will be maintained.
 *
 *       // ...
 *
 *       // The operation is complete.  Restart the kernel.
 *       xTaskResumeAll ();
 *   }
 *  }
 * @endcode
 * \ingroup SchedulerControl
 */
void vTaskSuspendAll( void ) PRIVILEGED_FUNCTION;

/**
 * Resumes scheduler activity after it was suspended by a call to
 * vTaskSuspendAll().
 *
 * xTaskResumeAll() only resumes the scheduler.  It does not unsuspend tasks
 * that were previously suspended by a call to vTaskSuspend().
 *
 * @return If resuming the scheduler caused a context switch then pdTRUE is
 *		  returned, otherwise pdFALSE is returned.
 *
 * Example usage:
 * @code{c}
 *  void vTask1( void * pvParameters )
 *  {
 *   for( ;; )
 *   {
 *       // Task code goes here.
 *
 *       // ...
 *
 *       // At some point the task wants to perform a long operation during
 *       // which it does not want to get swapped out.  It cannot use
 *       // taskENTER_CRITICAL ()/taskEXIT_CRITICAL () as the length of the
 *       // operation may cause interrupts to be missed - including the
 *       // ticks.
 *
 *       // Prevent the real time kernel swapping out the task.
 *       vTaskSuspendAll ();
 *
 *       // Perform the operation here.  There is no need to use critical
 *       // sections as we have all the microcontroller processing time.
 *       // During this time interrupts will still operate and the real
 *       // time kernel tick count will be maintained.
 *
 *       // ...
 *
 *       // The operation is complete.  Restart the kernel.  We want to force
 *       // a context switch - but there is no point if resuming the scheduler
 *       // caused a context switch already.
 *       if( !xTaskResumeAll () )
 *       {
 *            taskYIELD ();
 *       }
 *   }
 *  }
 * @endcode
 * \ingroup SchedulerControl
 */
BaseType_t xTaskResumeAll( void ) PRIVILEGED_FUNCTION;

/*-----------------------------------------------------------
 * TASK UTILITIES
 *----------------------------------------------------------*/

/**
 * Get tick count
 *
 * @return The count of ticks since vTaskStartScheduler was called.
 *
 * \ingroup TaskUtils
 */
TickType_t xTaskGetTickCount( void ) PRIVILEGED_FUNCTION;

/**
 * Get tick count from ISR
 *
 * @return The count of ticks since vTaskStartScheduler was called.
 *
 * This is a version of xTaskGetTickCount() that is safe to be called from an
 * ISR - provided that TickType_t is the natural word size of the
 * microcontroller being used or interrupt nesting is either not supported or
 * not being used.
 *
 * \ingroup TaskUtils
 */
TickType_t xTaskGetTickCountFromISR( void ) PRIVILEGED_FUNCTION;

/**
 * Get current number of tasks
 *
 * @return The number of tasks that the real time kernel is currently managing.
 * This includes all ready, blocked and suspended tasks.  A task that
 * has been deleted but not yet freed by the idle task will also be
 * included in the count.
 *
 * \ingroup TaskUtils
 */
UBaseType_t uxTaskGetNumberOfTasks( void ) PRIVILEGED_FUNCTION;

/**
 * Get task name
 *
 * @return The text (human readable) name of the task referenced by the handle
 * xTaskToQuery.  A task can query its own name by either passing in its own
 * handle, or by setting xTaskToQuery to NULL.  INCLUDE_pcTaskGetTaskName must be
 * set to 1 in FreeRTOSConfig.h for pcTaskGetTaskName() to be available.
 *
 * \ingroup TaskUtils
 */
char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */

/**
 * Returns the high water mark of the stack associated with xTask.
 *
 * INCLUDE_uxTaskGetStackHighWaterMark must be set to 1 in FreeRTOSConfig.h for
 * this function to be available.
 *
 * High water mark is the minimum free stack space there has been (in bytes
 * rather than words as found in vanilla FreeRTOS) since the task started.
 * The smaller the returned number the closer the task has come to overflowing its stack.
 *
 * @param xTask Handle of the task associated with the stack to be checked.
 * Set xTask to NULL to check the stack of the calling task.
 *
 * @return The smallest amount of free stack space there has been (in bytes
 * rather than words as found in vanilla FreeRTOS) since the task referenced by
 * xTask was created.
 */
UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;

/**
 * Returns the start of the stack associated with xTask.
 *
 * INCLUDE_pxTaskGetStackStart must be set to 1 in FreeRTOSConfig.h for
 * this function to be available.
 *
 * Returns the highest stack memory address on architectures where the stack grows down
 * from high memory, and the lowest memory address on architectures where the
 * stack grows up from low memory.
 *
 * @param xTask Handle of the task associated with the stack returned.
 * Set xTask to NULL to return the stack of the calling task.
 *
 * @return A pointer to the start of the stack.
 */
uint8_t* pxTaskGetStackStart( TaskHandle_t xTask) PRIVILEGED_FUNCTION;

/* When using trace macros it is sometimes necessary to include task.h before
FreeRTOS.h.  When this is done TaskHookFunction_t will not yet have been defined,
so the following two prototypes will cause a compilation error.  This can be
fixed by simply guarding against the inclusion of these two prototypes unless
they are explicitly required by the configUSE_APPLICATION_TASK_TAG configuration
constant. */
#ifdef configUSE_APPLICATION_TASK_TAG
	#if configUSE_APPLICATION_TASK_TAG == 1
		/**
		 * Sets pxHookFunction to be the task hook function used by the task xTask.
		 * @param xTask Handle of the task to set the hook function for
		 *              Passing xTask as NULL has the effect of setting the calling
		 *              tasks hook function.
		 * @param pxHookFunction  Pointer to the hook function.
		 */
		void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction ) PRIVILEGED_FUNCTION;

		/**
		 * Get the hook function assigned to given task.
		 * @param xTask Handle of the task to get the hook function for
		 *              Passing xTask as NULL has the effect of getting the calling
		 *              tasks hook function.
		 * @return The pxHookFunction value assigned to the task xTask.
		 */
		TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
	#endif /* configUSE_APPLICATION_TASK_TAG ==1 */
#endif /* ifdef configUSE_APPLICATION_TASK_TAG */
#if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )

	/**
	 * Set local storage pointer specific to the given task.
	 *
	 * Each task contains an array of pointers that is dimensioned by the
	 * configNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h.
	 * The kernel does not use the pointers itself, so the application writer
	 * can use the pointers for any purpose they wish.
	 *
	 * @param xTaskToSet  Task to set thread local storage pointer for
	 * @param xIndex The index of the pointer to set, from 0 to
	 *               configNUM_THREAD_LOCAL_STORAGE_POINTERS - 1.
	 * @param pvValue  Pointer value to set.
	 */
	void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue ) PRIVILEGED_FUNCTION;


	/**
	 * Get local storage pointer specific to the given task.
	 *
	 * Each task contains an array of pointers that is dimensioned by the
	 * configNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h.
	 * The kernel does not use the pointers itself, so the application writer
	 * can use the pointers for any purpose they wish.
	 *
	 * @param xTaskToQuery  Task to get thread local storage pointer for
	 * @param xIndex The index of the pointer to get, from 0 to
	 *               configNUM_THREAD_LOCAL_STORAGE_POINTERS - 1.
	 * @return  Pointer value
	 */
	void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex ) PRIVILEGED_FUNCTION;

	#if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS )

		/**
		 * Prototype of local storage pointer deletion callback.
		 */
		typedef void (*TlsDeleteCallbackFunction_t)( int, void * );

		/**
		 * Set local storage pointer and deletion callback.
		 *
		 * Each task contains an array of pointers that is dimensioned by the
		 * configNUM_THREAD_LOCAL_STORAGE_POINTERS setting in FreeRTOSConfig.h.
		 * The kernel does not use the pointers itself, so the application writer
		 * can use the pointers for any purpose they wish.
		 *
		 * Local storage pointers set for a task can reference dynamically
		 * allocated resources. This function is similar to
		 * vTaskSetThreadLocalStoragePointer, but provides a way to release
		 * these resources when the task gets deleted. For each pointer,
		 * a callback function can be set. This function will be called
		 * when task is deleted, with the local storage pointer index
		 * and value as arguments.
		 *
		 * @param xTaskToSet  Task to set thread local storage pointer for
		 * @param xIndex The index of the pointer to set, from 0 to
		 *               configNUM_THREAD_LOCAL_STORAGE_POINTERS - 1.
		 * @param pvValue  Pointer value to set.
		 * @param pvDelCallback  Function to call to dispose of the local
		 *                       storage pointer when the task is deleted.
		 */
		void vTaskSetThreadLocalStoragePointerAndDelCallback( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue, TlsDeleteCallbackFunction_t pvDelCallback);
	#endif

#endif

/**
 * Calls the hook function associated with xTask. Passing xTask as NULL has
 * the effect of calling the Running tasks (the calling task) hook function.
 *
 * @param xTask  Handle of the task to call the hook for.
 * @param pvParameter  Parameter passed to the hook function for the task to interpret as it
 * wants.  The return value is the value returned by the task hook function
 * registered by the user.
 */
BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter ) PRIVILEGED_FUNCTION;

/**
 * Get the handle of idle task for the current CPU.
 *
 * xTaskGetIdleTaskHandle() is only available if
 * INCLUDE_xTaskGetIdleTaskHandle is set to 1 in FreeRTOSConfig.h.
 *
 * @return The handle of the idle task.  It is not valid to call
 * xTaskGetIdleTaskHandle() before the scheduler has been started.
 */
TaskHandle_t xTaskGetIdleTaskHandle( void );

/**
 * Get the handle of idle task for the given CPU.
 *
 * xTaskGetIdleTaskHandleForCPU() is only available if
 * INCLUDE_xTaskGetIdleTaskHandle is set to 1 in FreeRTOSConfig.h.
 *
 * @param cpuid The CPU to get the handle for
 *
 * @return Idle task handle of a given cpu. It is not valid to call
 * xTaskGetIdleTaskHandleForCPU() before the scheduler has been started.
 */
TaskHandle_t xTaskGetIdleTaskHandleForCPU( UBaseType_t cpuid );

/**
 * Get the state of tasks in the system.
 *
 * configUSE_TRACE_FACILITY must be defined as 1 in FreeRTOSConfig.h for
 * uxTaskGetSystemState() to be available.
 *
 * uxTaskGetSystemState() populates an TaskStatus_t structure for each task in
 * the system.  TaskStatus_t structures contain, among other things, members
 * for the task handle, task name, task priority, task state, and total amount
 * of run time consumed by the task.  See the TaskStatus_t structure
 * definition in this file for the full member list.
 *
 * @note  This function is intended for debugging use only as its use results in
 * the scheduler remaining suspended for an extended period.
 *
 * @param pxTaskStatusArray A pointer to an array of TaskStatus_t structures.
 * The array must contain at least one TaskStatus_t structure for each task
 * that is under the control of the RTOS.  The number of tasks under the control
 * of the RTOS can be determined using the uxTaskGetNumberOfTasks() API function.
 *
 * @param uxArraySize The size of the array pointed to by the pxTaskStatusArray
 * parameter.  The size is specified as the number of indexes in the array, or
 * the number of TaskStatus_t structures contained in the array, not by the
 * number of bytes in the array.
 *
 * @param pulTotalRunTime If configGENERATE_RUN_TIME_STATS is set to 1 in
 * FreeRTOSConfig.h then *pulTotalRunTime is set by uxTaskGetSystemState() to the
 * total run time (as defined by the run time stats clock, see
 * http://www.freertos.org/rtos-run-time-stats.html) since the target booted.
 * pulTotalRunTime can be set to NULL to omit the total run time information.
 *
 * @return The number of TaskStatus_t structures that were populated by
 * uxTaskGetSystemState().  This should equal the number returned by the
 * uxTaskGetNumberOfTasks() API function, but will be zero if the value passed
 * in the uxArraySize parameter was too small.
 *
 * Example usage:
 * @code{c}
 * // This example demonstrates how a human readable table of run time stats
 * // information is generated from raw data provided by uxTaskGetSystemState().
 * // The human readable table is written to pcWriteBuffer
 * void vTaskGetRunTimeStats( char *pcWriteBuffer )
 * {
 * TaskStatus_t *pxTaskStatusArray;
 * volatile UBaseType_t uxArraySize, x;
 * uint32_t ulTotalRunTime, ulStatsAsPercentage;
 *
 *  // Make sure the write buffer does not contain a string.
 *  *pcWriteBuffer = 0x00;
 *
 *  // Take a snapshot of the number of tasks in case it changes while this
 *  // function is executing.
 *  uxArraySize = uxTaskGetNumberOfTasks();
 *
 *  // Allocate a TaskStatus_t structure for each task.  An array could be
 *  // allocated statically at compile time.
 *  pxTaskStatusArray = pvPortMalloc( uxArraySize * sizeof( TaskStatus_t ) );
 *
 *  if( pxTaskStatusArray != NULL )
 *  {
 *      // Generate raw status information about each task.
 *      uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalRunTime );
 *
 *      // For percentage calculations.
 *      ulTotalRunTime /= 100UL;
 *
 *      // Avoid divide by zero errors.
 *      if( ulTotalRunTime > 0 )
 *      {
 *          // For each populated position in the pxTaskStatusArray array,
 *          // format the raw data as human readable ASCII data
 *          for( x = 0; x < uxArraySize; x++ )
 *          {
 *              // What percentage of the total run time has the task used?
 *              // This will always be rounded down to the nearest integer.
 *              // ulTotalRunTimeDiv100 has already been divided by 100.
 *              ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalRunTime;
 *
 *              if( ulStatsAsPercentage > 0UL )
 *              {
 *                  sprintf( pcWriteBuffer, "%s\t\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
 *              }
 *              else
 *              {
 *                  // If the percentage is zero here then the task has
 *                  // consumed less than 1% of the total run time.
 *                  sprintf( pcWriteBuffer, "%s\t\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].pcTaskName, pxTaskStatusArray[ x ].ulRunTimeCounter );
 *              }
 *
 *              pcWriteBuffer += strlen( ( char * ) pcWriteBuffer );
 *          }
 *      }
 *
 *      // The array is no longer needed, free the memory it consumes.
 *      vPortFree( pxTaskStatusArray );
 *  }
 * }
 * @endcode
 */
UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime );

/**
 * List all the current tasks.
 *
 * configUSE_TRACE_FACILITY and configUSE_STATS_FORMATTING_FUNCTIONS must
 * both be defined as 1 for this function to be available.  See the
 * configuration section of the FreeRTOS.org website for more information.
 *
 * @note This function will disable interrupts for its duration.  It is
 * not intended for normal application runtime use but as a debug aid.
 *
 * Lists all the current tasks, along with their current state and stack
 * usage high water mark.
 *
 * Tasks are reported as blocked ('B'), ready ('R'), deleted ('D') or
 * suspended ('S').
 *
 * @note This function is provided for convenience only, and is used by many of the
 * demo applications.  Do not consider it to be part of the scheduler.
 *
 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
 * uxTaskGetSystemState() output into a human readable table that displays task
 * names, states and stack usage.
 *
 * vTaskList() has a dependency on the sprintf() C library function that might
 * bloat the code size, use a lot of stack, and provide different results on
 * different platforms.  An alternative, tiny, third party, and limited
 * functionality implementation of sprintf() is provided in many of the
 * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
 * printf-stdarg.c does not provide a full snprintf() implementation!).
 *
 * It is recommended that production systems call uxTaskGetSystemState()
 * directly to get access to raw stats data, rather than indirectly through a
 * call to vTaskList().
 *
 * @param pcWriteBuffer A buffer into which the above mentioned details
 * will be written, in ASCII form.  This buffer is assumed to be large
 * enough to contain the generated report.  Approximately 40 bytes per
 * task should be sufficient.
 *
 * \ingroup TaskUtils
 */
void vTaskList( char * pcWriteBuffer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */

/**
 * Get the state of running tasks as a string
 *
 * configGENERATE_RUN_TIME_STATS and configUSE_STATS_FORMATTING_FUNCTIONS
 * must both be defined as 1 for this function to be available.  The application
 * must also then provide definitions for
 * portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() and portGET_RUN_TIME_COUNTER_VALUE()
 * to configure a peripheral timer/counter and return the timers current count
 * value respectively.  The counter should be at least 10 times the frequency of
 * the tick count.
 *
 * @note This function will disable interrupts for its duration.  It is
 * not intended for normal application runtime use but as a debug aid.
 *
 * Setting configGENERATE_RUN_TIME_STATS to 1 will result in a total
 * accumulated execution time being stored for each task.  The resolution
 * of the accumulated time value depends on the frequency of the timer
 * configured by the portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() macro.
 * Calling vTaskGetRunTimeStats() writes the total execution time of each
 * task into a buffer, both as an absolute count value and as a percentage
 * of the total system execution time.
 *
 * @note This function is provided for convenience only, and is used by many of the
 * demo applications.  Do not consider it to be part of the scheduler.
 *
 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part of the
 * uxTaskGetSystemState() output into a human readable table that displays the
 * amount of time each task has spent in the Running state in both absolute and
 * percentage terms.
 *
 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library function
 * that might bloat the code size, use a lot of stack, and provide different
 * results on different platforms.  An alternative, tiny, third party, and
 * limited functionality implementation of sprintf() is provided in many of the
 * FreeRTOS/Demo sub-directories in a file called printf-stdarg.c (note
 * printf-stdarg.c does not provide a full snprintf() implementation!).
 *
 * It is recommended that production systems call uxTaskGetSystemState() directly
 * to get access to raw stats data, rather than indirectly through a call to
 * vTaskGetRunTimeStats().
 *
 * @param pcWriteBuffer A buffer into which the execution times will be
 * written, in ASCII form.  This buffer is assumed to be large enough to
 * contain the generated report.  Approximately 40 bytes per task should
 * be sufficient.
 *
 * \ingroup TaskUtils
 */
void vTaskGetRunTimeStats( char *pcWriteBuffer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */

/**
 * Send task notification.
 *
 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
 * function to be available.
 *
 * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
 * "notification value", which is a 32-bit unsigned integer (uint32_t).
 *
 * Events can be sent to a task using an intermediary object.  Examples of such
 * objects are queues, semaphores, mutexes and event groups.  Task notifications
 * are a method of sending an event directly to a task without the need for such
 * an intermediary object.
 *
 * A notification sent to a task can optionally perform an action, such as
 * update, overwrite or increment the task's notification value.  In that way
 * task notifications can be used to send data to a task, or be used as light
 * weight and fast binary or counting semaphores.
 *
 * A notification sent to a task will remain pending until it is cleared by the
 * task calling xTaskNotifyWait() or ulTaskNotifyTake().  If the task was
 * already in the Blocked state to wait for a notification when the notification
 * arrives then the task will automatically be removed from the Blocked state
 * (unblocked) and the notification cleared.
 *
 * A task can use xTaskNotifyWait() to [optionally] block to wait for a
 * notification to be pending, or ulTaskNotifyTake() to [optionally] block
 * to wait for its notification value to have a non-zero value.  The task does
 * not consume any CPU time while it is in the Blocked state.
 *
 * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
 *
 * @param xTaskToNotify The handle of the task being notified.  The handle to a
 * task can be returned from the xTaskCreate() API function used to create the
 * task, and the handle of the currently running task can be obtained by calling
 * xTaskGetCurrentTaskHandle().
 *
 * @param ulValue Data that can be sent with the notification.  How the data is
 * used depends on the value of the eAction parameter.
 *
 * @param eAction Specifies how the notification updates the task's notification
 * value, if at all.  Valid values for eAction are as follows:
 *	- eSetBits:
 *	  The task's notification value is bitwise ORed with ulValue.  xTaskNofify()
 * 	  always returns pdPASS in this case.
 *
 *	- eIncrement:
 *	  The task's notification value is incremented.  ulValue is not used and
 *	  xTaskNotify() always returns pdPASS in this case.
 *
 *	- eSetValueWithOverwrite:
 *	  The task's notification value is set to the value of ulValue, even if the
 *	  task being notified had not yet processed the previous notification (the
 *	  task already had a notification pending).  xTaskNotify() always returns
 *	  pdPASS in this case.
 *
 *	- eSetValueWithoutOverwrite:
 *	  If the task being notified did not already have a notification pending then
 *	  the task's notification value is set to ulValue and xTaskNotify() will
 *	  return pdPASS.  If the task being notified already had a notification
 *	  pending then no action is performed and pdFAIL is returned.
 *
 *	- eNoAction:
 *	  The task receives a notification without its notification value being
 *	  updated.  ulValue is not used and xTaskNotify() always returns pdPASS in
 *	  this case.
 *
 * @return Dependent on the value of eAction.  See the description of the
 * eAction parameter.
 *
 * \ingroup TaskNotifications
 */
BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction );

/**
 * Send task notification from an ISR.
 *
 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
 * function to be available.
 *
 * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
 * "notification value", which is a 32-bit unsigned integer (uint32_t).
 *
 * A version of xTaskNotify() that can be used from an interrupt service routine
 * (ISR).
 *
 * Events can be sent to a task using an intermediary object.  Examples of such
 * objects are queues, semaphores, mutexes and event groups.  Task notifications
 * are a method of sending an event directly to a task without the need for such
 * an intermediary object.
 *
 * A notification sent to a task can optionally perform an action, such as
 * update, overwrite or increment the task's notification value.  In that way
 * task notifications can be used to send data to a task, or be used as light
 * weight and fast binary or counting semaphores.
 *
 * A notification sent to a task will remain pending until it is cleared by the
 * task calling xTaskNotifyWait() or ulTaskNotifyTake().  If the task was
 * already in the Blocked state to wait for a notification when the notification
 * arrives then the task will automatically be removed from the Blocked state
 * (unblocked) and the notification cleared.
 *
 * A task can use xTaskNotifyWait() to [optionally] block to wait for a
 * notification to be pending, or ulTaskNotifyTake() to [optionally] block
 * to wait for its notification value to have a non-zero value.  The task does
 * not consume any CPU time while it is in the Blocked state.
 *
 * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
 *
 * @param xTaskToNotify The handle of the task being notified.  The handle to a
 * task can be returned from the xTaskCreate() API function used to create the
 * task, and the handle of the currently running task can be obtained by calling
 * xTaskGetCurrentTaskHandle().
 *
 * @param ulValue Data that can be sent with the notification.  How the data is
 * used depends on the value of the eAction parameter.
 *
 * @param eAction Specifies how the notification updates the task's notification
 * value, if at all.  Valid values for eAction are as follows:
 *	- eSetBits:
 *	  The task's notification value is bitwise ORed with ulValue.  xTaskNofify()
 * 	  always returns pdPASS in this case.
 *
 *	- eIncrement:
 *	  The task's notification value is incremented.  ulValue is not used and
 *	  xTaskNotify() always returns pdPASS in this case.
 *
 *	- eSetValueWithOverwrite:
 *	  The task's notification value is set to the value of ulValue, even if the
 *	  task being notified had not yet processed the previous notification (the
 *	  task already had a notification pending).  xTaskNotify() always returns
 *	  pdPASS in this case.
 *
 *	- eSetValueWithoutOverwrite:
 *	  If the task being notified did not already have a notification pending then
 *	  the task's notification value is set to ulValue and xTaskNotify() will
 *	  return pdPASS.  If the task being notified already had a notification
 *	  pending then no action is performed and pdFAIL is returned.
 *
 *	- eNoAction:
 *	  The task receives a notification without its notification value being
 *	  updated.  ulValue is not used and xTaskNotify() always returns pdPASS in
 *	  this case.
 *
 * @param pxHigherPriorityTaskWoken  xTaskNotifyFromISR() will set
 * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
 * task to which the notification was sent to leave the Blocked state, and the
 * unblocked task has a priority higher than the currently running task.  If
 * xTaskNotifyFromISR() sets this value to pdTRUE then a context switch should
 * be requested before the interrupt is exited.  How a context switch is
 * requested from an ISR is dependent on the port - see the documentation page
 * for the port in use.
 *
 * @return Dependent on the value of eAction.  See the description of the
 * eAction parameter.
 *
 * \ingroup TaskNotifications
 */
BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken );

/**
 * Wait for task notification
 *
 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
 * function to be available.
 *
 * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
 * "notification value", which is a 32-bit unsigned integer (uint32_t).
 *
 * Events can be sent to a task using an intermediary object.  Examples of such
 * objects are queues, semaphores, mutexes and event groups.  Task notifications
 * are a method of sending an event directly to a task without the need for such
 * an intermediary object.
 *
 * A notification sent to a task can optionally perform an action, such as
 * update, overwrite or increment the task's notification value.  In that way
 * task notifications can be used to send data to a task, or be used as light
 * weight and fast binary or counting semaphores.
 *
 * A notification sent to a task will remain pending until it is cleared by the
 * task calling xTaskNotifyWait() or ulTaskNotifyTake().  If the task was
 * already in the Blocked state to wait for a notification when the notification
 * arrives then the task will automatically be removed from the Blocked state
 * (unblocked) and the notification cleared.
 *
 * A task can use xTaskNotifyWait() to [optionally] block to wait for a
 * notification to be pending, or ulTaskNotifyTake() to [optionally] block
 * to wait for its notification value to have a non-zero value.  The task does
 * not consume any CPU time while it is in the Blocked state.
 *
 * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
 *
 * @param ulBitsToClearOnEntry Bits that are set in ulBitsToClearOnEntry value
 * will be cleared in the calling task's notification value before the task
 * checks to see if any notifications are pending, and optionally blocks if no
 * notifications are pending.  Setting ulBitsToClearOnEntry to ULONG_MAX (if
 * limits.h is included) or 0xffffffffUL (if limits.h is not included) will have
 * the effect of resetting the task's notification value to 0.  Setting
 * ulBitsToClearOnEntry to 0 will leave the task's notification value unchanged.
 *
 * @param ulBitsToClearOnExit If a notification is pending or received before
 * the calling task exits the xTaskNotifyWait() function then the task's
 * notification value (see the xTaskNotify() API function) is passed out using
 * the pulNotificationValue parameter.  Then any bits that are set in
 * ulBitsToClearOnExit will be cleared in the task's notification value (note
 * *pulNotificationValue is set before any bits are cleared).  Setting
 * ulBitsToClearOnExit to ULONG_MAX (if limits.h is included) or 0xffffffffUL
 * (if limits.h is not included) will have the effect of resetting the task's
 * notification value to 0 before the function exits.  Setting
 * ulBitsToClearOnExit to 0 will leave the task's notification value unchanged
 * when the function exits (in which case the value passed out in
 * pulNotificationValue will match the task's notification value).
 *
 * @param pulNotificationValue Used to pass the task's notification value out
 * of the function.  Note the value passed out will not be effected by the
 * clearing of any bits caused by ulBitsToClearOnExit being non-zero.
 *
 * @param xTicksToWait The maximum amount of time that the task should wait in
 * the Blocked state for a notification to be received, should a notification
 * not already be pending when xTaskNotifyWait() was called.  The task
 * will not consume any processing time while it is in the Blocked state.  This
 * is specified in kernel ticks, the macro pdMS_TO_TICSK( value_in_ms ) can be
 * used to convert a time specified in milliseconds to a time specified in
 * ticks.
 *
 * @return If a notification was received (including notifications that were
 * already pending when xTaskNotifyWait was called) then pdPASS is
 * returned.  Otherwise pdFAIL is returned.
 *
 * \ingroup TaskNotifications
 */
BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait );

/**
 * Simplified macro for sending task notification.
 *
 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro
 * to be available.
 *
 * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
 * "notification value", which is a 32-bit unsigned integer (uint32_t).
 *
 * Events can be sent to a task using an intermediary object.  Examples of such
 * objects are queues, semaphores, mutexes and event groups.  Task notifications
 * are a method of sending an event directly to a task without the need for such
 * an intermediary object.
 *
 * A notification sent to a task can optionally perform an action, such as
 * update, overwrite or increment the task's notification value.  In that way
 * task notifications can be used to send data to a task, or be used as light
 * weight and fast binary or counting semaphores.
 *
 * xTaskNotifyGive() is a helper macro intended for use when task notifications
 * are used as light weight and faster binary or counting semaphore equivalents.
 * Actual FreeRTOS semaphores are given using the xSemaphoreGive() API function,
 * the equivalent action that instead uses a task notification is
 * xTaskNotifyGive().
 *
 * When task notifications are being used as a binary or counting semaphore
 * equivalent then the task being notified should wait for the notification
 * using the ulTaskNotificationTake() API function rather than the
 * xTaskNotifyWait() API function.
 *
 * See http://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
 *
 * @param xTaskToNotify The handle of the task being notified.  The handle to a
 * task can be returned from the xTaskCreate() API function used to create the
 * task, and the handle of the currently running task can be obtained by calling
 * xTaskGetCurrentTaskHandle().
 *
 * @return xTaskNotifyGive() is a macro that calls xTaskNotify() with the
 * eAction parameter set to eIncrement - so pdPASS is always returned.
 *
 * \ingroup TaskNotifications
 */
#define xTaskNotifyGive( xTaskToNotify ) xTaskNotify( ( xTaskToNotify ), 0, eIncrement )

/**
 * Simplified macro for sending task notification from ISR.
 *
 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this macro
 * to be available.
 *
 * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
 * "notification value", which is a 32-bit unsigned integer (uint32_t).
 *
 * A version of xTaskNotifyGive() that can be called from an interrupt service
 * routine (ISR).
 *
 * Events can be sent to a task using an intermediary object.  Examples of such
 * objects are queues, semaphores, mutexes and event groups.  Task notifications
 * are a method of sending an event directly to a task without the need for such
 * an intermediary object.
 *
 * A notification sent to a task can optionally perform an action, such as
 * update, overwrite or increment the task's notification value.  In that way
 * task notifications can be used to send data to a task, or be used as light
 * weight and fast binary or counting semaphores.
 *
 * vTaskNotifyGiveFromISR() is intended for use when task notifications are
 * used as light weight and faster binary or counting semaphore equivalents.
 * Actual FreeRTOS semaphores are given from an ISR using the
 * xSemaphoreGiveFromISR() API function, the equivalent action that instead uses
 * a task notification is vTaskNotifyGiveFromISR().
 *
 * When task notifications are being used as a binary or counting semaphore
 * equivalent then the task being notified should wait for the notification
 * using the ulTaskNotificationTake() API function rather than the
 * xTaskNotifyWait() API function.
 *
 * See http://www.FreeRTOS.org/RTOS-task-notifications.html for more details.
 *
 * @param xTaskToNotify The handle of the task being notified.  The handle to a
 * task can be returned from the xTaskCreate() API function used to create the
 * task, and the handle of the currently running task can be obtained by calling
 * xTaskGetCurrentTaskHandle().
 *
 * @param pxHigherPriorityTaskWoken  vTaskNotifyGiveFromISR() will set
 * *pxHigherPriorityTaskWoken to pdTRUE if sending the notification caused the
 * task to which the notification was sent to leave the Blocked state, and the
 * unblocked task has a priority higher than the currently running task.  If
 * vTaskNotifyGiveFromISR() sets this value to pdTRUE then a context switch
 * should be requested before the interrupt is exited.  How a context switch is
 * requested from an ISR is dependent on the port - see the documentation page
 * for the port in use.
 *
 * \ingroup TaskNotifications
 */
void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken );

/**
 * Simplified macro for receiving task notification.
 *
 * configUSE_TASK_NOTIFICATIONS must be undefined or defined as 1 for this
 * function to be available.
 *
 * When configUSE_TASK_NOTIFICATIONS is set to one each task has its own private
 * "notification value", which is a 32-bit unsigned integer (uint32_t).
 *
 * Events can be sent to a task using an intermediary object.  Examples of such
 * objects are queues, semaphores, mutexes and event groups.  Task notifications
 * are a method of sending an event directly to a task without the need for such
 * an intermediary object.
 *
 * A notification sent to a task can optionally perform an action, such as
 * update, overwrite or increment the task's notification value.  In that way
 * task notifications can be used to send data to a task, or be used as light
 * weight and fast binary or counting semaphores.
 *
 * ulTaskNotifyTake() is intended for use when a task notification is used as a
 * faster and lighter weight binary or counting semaphore alternative.  Actual
 * FreeRTOS semaphores are taken using the xSemaphoreTake() API function, the
 * equivalent action that instead uses a task notification is
 * ulTaskNotifyTake().
 *
 * When a task is using its notification value as a binary or counting semaphore
 * other tasks should send notifications to it using the xTaskNotifyGive()
 * macro, or xTaskNotify() function with the eAction parameter set to
 * eIncrement.
 *
 * ulTaskNotifyTake() can either clear the task's notification value to
 * zero on exit, in which case the notification value acts like a binary
 * semaphore, or decrement the task's notification value on exit, in which case
 * the notification value acts like a counting semaphore.
 *
 * A task can use ulTaskNotifyTake() to [optionally] block to wait for a
 * the task's notification value to be non-zero.  The task does not consume any
 * CPU time while it is in the Blocked state.
 *
 * Where as xTaskNotifyWait() will return when a notification is pending,
 * ulTaskNotifyTake() will return when the task's notification value is
 * not zero.
 *
 * See http://www.FreeRTOS.org/RTOS-task-notifications.html for details.
 *
 * @param xClearCountOnExit if xClearCountOnExit is pdFALSE then the task's
 * notification value is decremented when the function exits.  In this way the
 * notification value acts like a counting semaphore.  If xClearCountOnExit is
 * not pdFALSE then the task's notification value is cleared to zero when the
 * function exits.  In this way the notification value acts like a binary
 * semaphore.
 *
 * @param xTicksToWait The maximum amount of time that the task should wait in
 * the Blocked state for the task's notification value to be greater than zero,
 * should the count not already be greater than zero when
 * ulTaskNotifyTake() was called.  The task will not consume any processing
 * time while it is in the Blocked state.  This is specified in kernel ticks,
 * the macro pdMS_TO_TICSK( value_in_ms ) can be used to convert a time
 * specified in milliseconds to a time specified in ticks.
 *
 * @return The task's notification count before it is either cleared to zero or
 * decremented (see the xClearCountOnExit parameter).
 *
 * \ingroup TaskNotifications
 */
uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait );

/*-----------------------------------------------------------
 * SCHEDULER INTERNALS AVAILABLE FOR PORTING PURPOSES
 *----------------------------------------------------------*/
/** @cond */
/*
 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS ONLY
 * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
 * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
 *
 * Called from the real time kernel tick (either preemptive or cooperative),
 * this increments the tick count and checks if any tasks that are blocked
 * for a finite period required removing from a blocked list and placing on
 * a ready list.  If a non-zero value is returned then a context switch is
 * required because either:
 *   + A task was removed from a blocked list because its timeout had expired,
 *     or
 *   + Time slicing is in use and there is a task of equal priority to the
 *     currently running task.
 */
BaseType_t xTaskIncrementTick( void ) PRIVILEGED_FUNCTION;

/*
 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS AN
 * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
 *
 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
 *
 * Removes the calling task from the ready list and places it both
 * on the list of tasks waiting for a particular event, and the
 * list of delayed tasks.  The task will be removed from both lists
 * and replaced on the ready list should either the event occur (and
 * there be no higher priority tasks waiting on the same event) or
 * the delay period expires.
 *
 * The 'unordered' version replaces the event list item value with the
 * xItemValue value, and inserts the list item at the end of the list.
 *
 * The 'ordered' version uses the existing event list item value (which is the
 * owning tasks priority) to insert the list item into the event list is task
 * priority order.
 *
 * @param pxEventList The list containing tasks that are blocked waiting
 * for the event to occur.
 *
 * @param xItemValue The item value to use for the event list item when the
 * event list is not ordered by task priority.
 *
 * @param xTicksToWait The maximum amount of time that the task should wait
 * for the event to occur.  This is specified in kernel ticks,the constant
 * portTICK_PERIOD_MS can be used to convert kernel ticks into a real time
 * period.
 */
void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;

/*
 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS AN
 * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
 *
 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
 *
 * This function performs nearly the same function as vTaskPlaceOnEventList().
 * The difference being that this function does not permit tasks to block
 * indefinitely, whereas vTaskPlaceOnEventList() does.
 *
 */
void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;

/*
 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS AN
 * INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
 *
 * THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED.
 *
 * Removes a task from both the specified event list and the list of blocked
 * tasks, and places it on a ready queue.
 *
 * xTaskRemoveFromEventList()/xTaskRemoveFromUnorderedEventList() will be called
 * if either an event occurs to unblock a task, or the block timeout period
 * expires.
 *
 * xTaskRemoveFromEventList() is used when the event list is in task priority
 * order.  It removes the list item from the head of the event list as that will
 * have the highest priority owning task of all the tasks on the event list.
 * xTaskRemoveFromUnorderedEventList() is used when the event list is not
 * ordered and the event list items hold something other than the owning tasks
 * priority.  In this case the event list item value is updated to the value
 * passed in the xItemValue parameter.
 *
 * @return pdTRUE if the task being removed has a higher priority than the task
 * making the call, otherwise pdFALSE.
 */
BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ) PRIVILEGED_FUNCTION;
BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue ) PRIVILEGED_FUNCTION;

/*
 * THIS FUNCTION MUST NOT BE USED FROM APPLICATION CODE.  IT IS ONLY
 * INTENDED FOR USE WHEN IMPLEMENTING A PORT OF THE SCHEDULER AND IS
 * AN INTERFACE WHICH IS FOR THE EXCLUSIVE USE OF THE SCHEDULER.
 *
 * Sets the pointer to the current TCB to the TCB of the highest priority task
 * that is ready to run.
 */
void vTaskSwitchContext( void ) PRIVILEGED_FUNCTION;

/*
 * THESE FUNCTIONS MUST NOT BE USED FROM APPLICATION CODE.  THEY ARE USED BY
 * THE EVENT BITS MODULE.
 */
TickType_t uxTaskResetEventItemValue( void ) PRIVILEGED_FUNCTION;

/*
 * Return the handle of the calling task.
 */
TaskHandle_t xTaskGetCurrentTaskHandle( void ) PRIVILEGED_FUNCTION;



/*
 * Return the handle of the task running on a certain CPU. Because of
 * the nature of SMP processing, there is no guarantee that this
 * value will still be valid on return and should only be used for
 * debugging purposes.
 */
TaskHandle_t xTaskGetCurrentTaskHandleForCPU( BaseType_t cpuid );


/*
 * Capture the current time status for future reference.
 */
void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ) PRIVILEGED_FUNCTION;

/*
 * Compare the time status now with that previously captured to see if the
 * timeout has expired.
 */
BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait ) PRIVILEGED_FUNCTION;

/*
 * Shortcut used by the queue implementation to prevent unnecessary call to
 * taskYIELD();
 */
void vTaskMissedYield( void ) PRIVILEGED_FUNCTION;

/*
 * Returns the scheduler state as taskSCHEDULER_RUNNING,
 * taskSCHEDULER_NOT_STARTED or taskSCHEDULER_SUSPENDED.
 */
BaseType_t xTaskGetSchedulerState( void ) PRIVILEGED_FUNCTION;

/*
 * Raises the priority of the mutex holder to that of the calling task should
 * the mutex holder have a priority less than the calling task.
 */
void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION;

/*
 * Set the priority of a task back to its proper priority in the case that it
 * inherited a higher priority while it was holding a semaphore.
 */
BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder ) PRIVILEGED_FUNCTION;

/*
 * Get the uxTCBNumber assigned to the task referenced by the xTask parameter.
 */
UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;


/*
 * Get the current core affinity of a task
 */
BaseType_t xTaskGetAffinity( TaskHandle_t xTask ) PRIVILEGED_FUNCTION;

/*
 * Set the uxTaskNumber of the task referenced by the xTask parameter to
 * uxHandle.
 */
void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle ) PRIVILEGED_FUNCTION;

/*
 * Only available when configUSE_TICKLESS_IDLE is set to 1.
 * If tickless mode is being used, or a low power mode is implemented, then
 * the tick interrupt will not execute during idle periods.  When this is the
 * case, the tick count value maintained by the scheduler needs to be kept up
 * to date with the actual execution time by being skipped forward by a time
 * equal to the idle period.
 */
void vTaskStepTick( const TickType_t xTicksToJump ) PRIVILEGED_FUNCTION;

/*
 * Only avilable when configUSE_TICKLESS_IDLE is set to 1.
 * Provided for use within portSUPPRESS_TICKS_AND_SLEEP() to allow the port
 * specific sleep function to determine if it is ok to proceed with the sleep,
 * and if it is ok to proceed, if it is ok to sleep indefinitely.
 *
 * This function is necessary because portSUPPRESS_TICKS_AND_SLEEP() is only
 * called with the scheduler suspended, not from within a critical section.  It
 * is therefore possible for an interrupt to request a context switch between
 * portSUPPRESS_TICKS_AND_SLEEP() and the low power mode actually being
 * entered.  eTaskConfirmSleepModeStatus() should be called from a short
 * critical section between the timer being stopped and the sleep mode being
 * entered to ensure it is ok to proceed into the sleep mode.
 */
eSleepModeStatus eTaskConfirmSleepModeStatus( void ) PRIVILEGED_FUNCTION;

/*
 * For internal use only.  Increment the mutex held count when a mutex is
 * taken and return the handle of the task that has taken the mutex.
 */
void *pvTaskIncrementMutexHeldCount( void );

/*
 * This function fills array with TaskSnapshot_t structures for every task in the system.
 * Used by core dump facility to get snapshots of all tasks in the system.
 * Only available when configENABLE_TASK_SNAPSHOT is set to 1.
 * @param pxTaskSnapshotArray Pointer to array of TaskSnapshot_t structures to store tasks snapshot data.
 * @param uxArraySize Size of tasks snapshots array.
 * @param pxTcbSz Pointer to store size of TCB.
 * @return Number of elements stored in array.
 */
UBaseType_t uxTaskGetSnapshotAll( TaskSnapshot_t * const pxTaskSnapshotArray, const UBaseType_t uxArraySize, UBaseType_t * const pxTcbSz );

/** @endcond */

#ifdef __cplusplus
}
#endif
#endif /* INC_TASK_H */

IDF3.3.2-task/task.c

/*
    FreeRTOS V8.2.0 - Copyright (C) 2015 Real Time Engineers Ltd.
    All rights reserved

    VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.

    This file is part of the FreeRTOS distribution.

    FreeRTOS is free software; you can redistribute it and/or modify it under
    the terms of the GNU General Public License (version 2) as published by the
    Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.

	***************************************************************************
    >>!   NOTE: The modification to the GPL is included to allow you to     !<<
    >>!   distribute a combined work that includes FreeRTOS without being   !<<
    >>!   obliged to provide the source code for proprietary components     !<<
    >>!   outside of the FreeRTOS kernel.                                   !<<
	***************************************************************************

    FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
    WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
    FOR A PARTICULAR PURPOSE.  Full license text is available on the following
    link: http://www.freertos.org/a00114.html

    ***************************************************************************
     *                                                                       *
     *    FreeRTOS provides completely free yet professionally developed,    *
     *    robust, strictly quality controlled, supported, and cross          *
     *    platform software that is more than just the market leader, it     *
     *    is the industry's de facto standard.                               *
     *                                                                       *
     *    Help yourself get started quickly while simultaneously helping     *
     *    to support the FreeRTOS project by purchasing a FreeRTOS           *
     *    tutorial book, reference manual, or both:                          *
     *    http://www.FreeRTOS.org/Documentation                              *
     *                                                                       *
    ***************************************************************************

    http://www.FreeRTOS.org/FAQHelp.html - Having a problem?  Start by reading
	the FAQ page "My application does not run, what could be wrong?".  Have you
	defined configASSERT()?

	http://www.FreeRTOS.org/support - In return for receiving this top quality
	embedded software for free we request you assist our global community by
	participating in the support forum.

	http://www.FreeRTOS.org/training - Investing in training allows your team to
	be as productive as possible as early as possible.  Now you can receive
	FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
	Ltd, and the world's leading authority on the world's leading RTOS.

    http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
    including FreeRTOS+Trace - an indispensable productivity tool, a DOS
    compatible FAT file system, and our tiny thread aware UDP/IP stack.

    http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
    Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.

    http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
    Integrity Systems ltd. to sell under the OpenRTOS brand.  Low cost OpenRTOS
    licenses offer ticketed support, indemnification and commercial middleware.

    http://www.SafeRTOS.com - High Integrity Systems also provide a safety
    engineered and independently SIL3 certified version for use in safety and
    mission critical applications that require provable dependability.

    1 tab == 4 spaces!
*/

/* Standard includes. */
#include <stdlib.h>
#include <string.h>

/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
all the API functions to use the MPU wrappers.  That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE

#include "rom/ets_sys.h"
#include "esp_newlib.h"
#include "esp_panic.h"

/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "StackMacros.h"
#include "portmacro.h"
#include "semphr.h"

/* Lint e961 and e750 are suppressed as a MISRA exception justified because the
MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined for the
header files above, but not in this file, in order to generate the correct
privileged Vs unprivileged linkage and placement. */
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750. */

/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
functions but without including stdio.h here. */
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )
	/* At the bottom of this file are two optional functions that can be used
	to generate human readable text from the raw data generated by the
	uxTaskGetSystemState() function.  Note the formatting functions are provided
	for convenience only, and are NOT considered part of the kernel. */
	#include <stdio.h>
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */

/* Sanity check the configuration. */
#if configUSE_TICKLESS_IDLE != 0
	#if INCLUDE_vTaskSuspend != 1
		#error INCLUDE_vTaskSuspend must be set to 1 if configUSE_TICKLESS_IDLE is not set to 0
	#endif /* INCLUDE_vTaskSuspend */
#endif /* configUSE_TICKLESS_IDLE */

/*
 * Defines the size, in bytes, of the stack allocated to the idle task.
 */
#define tskIDLE_STACK_SIZE	configIDLE_TASK_STACK_SIZE

#if( configUSE_PREEMPTION == 0 )
	/* If the cooperative scheduler is being used then a yield should not be
	performed just because a higher priority task has been woken. */
	#define taskYIELD_IF_USING_PREEMPTION()
#else
	#define taskYIELD_IF_USING_PREEMPTION() portYIELD_WITHIN_API()
#endif




/* Value that can be assigned to the eNotifyState member of the TCB. */
typedef enum
{
	eNotWaitingNotification = 0,
	eWaitingNotification,
	eNotified
} eNotifyValue;

/* Sometimes the FreeRTOSConfig.h settings only allow a task to be created using
dynamically allocated RAM, in which case when any task is deleted it is known
that both the task's stack and TCB need to be freed.  Sometimes the
FreeRTOSConfig.h settings only allow a task to be created using statically
allocated RAM, in which case when any task is deleted it is known that neither
the task's stack or TCB should be freed.  Sometimes the FreeRTOSConfig.h
settings allow a task to be created using either statically or dynamically
allocated RAM, in which case a member of the TCB is used to record whether the
stack and/or TCB were allocated statically or dynamically, so when a task is
deleted the RAM that was allocated dynamically is freed again and no attempt is
made to free the RAM that was allocated statically.
tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE is only true if it is possible for a
task to be created using either statically or dynamically allocated RAM.  Note
that if portUSING_MPU_WRAPPERS is 1 then a protected task can be created with
a statically allocated stack and a dynamically allocated TCB. */
#define tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE ( ( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) || ( portUSING_MPU_WRAPPERS == 1 ) )
#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB 		( ( uint8_t ) 0 )
#define tskSTATICALLY_ALLOCATED_STACK_ONLY 			( ( uint8_t ) 1 )
#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB		( ( uint8_t ) 2 )

/*
 * Task control block.  A task control block (TCB) is allocated for each task,
 * and stores task state information, including a pointer to the task's context
 * (the task's run time environment, including register values)
 */
typedef struct tskTaskControlBlock
{
	volatile StackType_t	*pxTopOfStack;	/*< Points to the location of the last item placed on the tasks stack.  THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */

	#if ( portUSING_MPU_WRAPPERS == 1 )
		xMPU_SETTINGS	xMPUSettings;		/*< The MPU settings are defined as part of the port layer.  THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
	#endif

	ListItem_t			xGenericListItem;	/*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
	ListItem_t			xEventListItem;		/*< Used to reference a task from an event list. */
	UBaseType_t			uxPriority;			/*< The priority of the task.  0 is the lowest priority. */
	StackType_t			*pxStack;			/*< Points to the start of the stack. */
	char				pcTaskName[ configMAX_TASK_NAME_LEN ];/*< Descriptive name given to the task when created.  Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
	BaseType_t			xCoreID;			/*< Core this task is pinned to */
											/* If this moves around (other than pcTaskName size changes), please change the define in xtensa_vectors.S as well. */
	#if ( portSTACK_GROWTH > 0 || configENABLE_TASK_SNAPSHOT == 1 )
		StackType_t		*pxEndOfStack;		/*< Points to the end of the stack on architectures where the stack grows up from low memory. */
	#endif

	#if ( portCRITICAL_NESTING_IN_TCB == 1 )
		UBaseType_t 	uxCriticalNesting; 	/*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
		uint32_t		uxOldInterruptState; /*< Interrupt state before the outer taskEnterCritical was called */
	#endif

	#if ( configUSE_TRACE_FACILITY == 1 )
		UBaseType_t		uxTCBNumber;		/*< Stores a number that increments each time a TCB is created.  It allows debuggers to determine when a task has been deleted and then recreated. */
		UBaseType_t  	uxTaskNumber;		/*< Stores a number specifically for use by third party trace code. */
	#endif

	#if ( configUSE_MUTEXES == 1 )
		UBaseType_t 	uxBasePriority;		/*< The priority last assigned to the task - used by the priority inheritance mechanism. */
		UBaseType_t 	uxMutexesHeld;
	#endif

	#if ( configUSE_APPLICATION_TASK_TAG == 1 )
		TaskHookFunction_t pxTaskTag;
	#endif

	#if( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
		void *pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
	#if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS )
		TlsDeleteCallbackFunction_t pvThreadLocalStoragePointersDelCallback[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
	#endif
	#endif

	#if ( configGENERATE_RUN_TIME_STATS == 1 )
		uint32_t		ulRunTimeCounter;	/*< Stores the amount of time the task has spent in the Running state. */
	#endif

	#if ( configUSE_NEWLIB_REENTRANT == 1 )
		/* Allocate a Newlib reent structure that is specific to this task.
		Note Newlib support has been included by popular demand, but is not
		used by the FreeRTOS maintainers themselves.  FreeRTOS is not
		responsible for resulting newlib operation.  User must be familiar with
		newlib and must provide system-wide implementations of the necessary
		stubs. Be warned that (at the time of writing) the current newlib design
		implements a system-wide malloc() that must be provided with locks. */
		struct 	_reent xNewLib_reent;
	#endif

	#if ( configUSE_TASK_NOTIFICATIONS == 1 )
		volatile uint32_t ulNotifiedValue;
		volatile eNotifyValue eNotifyState;
	#endif

	/* See the comments above the definition of
	tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
	#if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
		uint8_t	ucStaticallyAllocated; 		/*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
	#endif

} tskTCB;

/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
below to enable the use of older kernel aware debuggers. */
typedef tskTCB TCB_t;

#if __GNUC_PREREQ(4, 6)
_Static_assert(sizeof(StaticTask_t) == sizeof(TCB_t), "StaticTask_t != TCB_t");
#endif

/*
 * Some kernel aware debuggers require the data the debugger needs access to to
 * be global, rather than file scope.
 */
#ifdef portREMOVE_STATIC_QUALIFIER
	#define static
#endif

/*lint -e956 A manual analysis and inspection has been used to determine which
static variables must be declared volatile. */

PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB[ portNUM_PROCESSORS ] = { NULL };

/* Lists for ready and blocked tasks. --------------------*/
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ];/*< Prioritised ready tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList1;						/*< Delayed tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList2;						/*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList;				/*< Points to the delayed task list currently being used. */
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList;		/*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t xPendingReadyList[ portNUM_PROCESSORS ];						/*< Tasks that have been readied while the scheduler was suspended.  They will be moved to the ready list when the scheduler is resumed. */

#if ( INCLUDE_vTaskDelete == 1 )

	PRIVILEGED_DATA static List_t xTasksWaitingTermination;				/*< Tasks that have been deleted - but their memory not yet freed. Protected by xTaskQueueMutex.*/
	PRIVILEGED_DATA static volatile UBaseType_t uxTasksDeleted = ( UBaseType_t ) 0U;

#endif

#if ( INCLUDE_vTaskSuspend == 1 )

	PRIVILEGED_DATA static List_t xSuspendedTaskList;					/*< Tasks that are currently suspended. */

#endif

#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )

	PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle[portNUM_PROCESSORS] = {NULL};			/*< Holds the handle of the idle task.  The idle task is created automatically when the scheduler is started. */

#endif

/* Other file private variables. --------------------------------*/
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks 	= ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xTickCount 				= ( TickType_t ) 0U;
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority 		= tskIDLE_PRIORITY;
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning 		= pdFALSE;
PRIVILEGED_DATA static volatile UBaseType_t uxPendedTicks 			= ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile BaseType_t xYieldPending[portNUM_PROCESSORS] 		= {pdFALSE};
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows 			= ( BaseType_t ) 0;
PRIVILEGED_DATA static UBaseType_t uxTaskNumber 					= ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime		= portMAX_DELAY;

/* Context switches are held pending while the scheduler is suspended.  Also,
interrupts must not manipulate the xGenericListItem of a TCB, or any of the
lists the xGenericListItem can be referenced from, if the scheduler is suspended.
If an interrupt needs to unblock a task while the scheduler is suspended then it
moves the task's event list item into the xPendingReadyList, ready for the
kernel to move the task from the pending ready list into the real ready list
when the scheduler is unsuspended.  The pending ready list itself can only be
accessed from a critical section. */
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended[ portNUM_PROCESSORS ]	= { ( UBaseType_t ) pdFALSE };

/* We use just one spinlock for all the critical sections. */
PRIVILEGED_DATA static portMUX_TYPE xTaskQueueMutex = portMUX_INITIALIZER_UNLOCKED;

#if ( configGENERATE_RUN_TIME_STATS == 1 )

	PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime[portNUM_PROCESSORS] = {0U};	/*< Holds the value of a timer/counter the last time a task was switched in on a particular core. */
	PRIVILEGED_DATA static uint32_t ulTotalRunTime = 0UL;		/*< Holds the total amount of execution time as defined by the run time counter clock. */

#endif


// per-CPU flags indicating that we are doing context switch, it is used by apptrace and sysview modules
// in order to avoid calls of vPortYield from traceTASK_SWITCHED_IN/OUT when waiting
// for locks to be free or for host to read full trace buffer
PRIVILEGED_DATA static volatile BaseType_t xSwitchingContext[ portNUM_PROCESSORS ]  = { pdFALSE };

/*lint +e956 */

/* Debugging and trace facilities private variables and macros. ------------*/

/*
 * The value used to fill the stack of a task when the task is created.  This
 * is used purely for checking the high water mark for tasks.
 */
#define tskSTACK_FILL_BYTE	( 0xa5U )

/*
 * Macros used by vListTask to indicate which state a task is in.
 */
#define tskBLOCKED_CHAR		( 'B' )
#define tskREADY_CHAR		( 'R' )
#define tskDELETED_CHAR		( 'D' )
#define tskSUSPENDED_CHAR	( 'S' )

/*-----------------------------------------------------------*/


#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )

	/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
	performed in a generic way that is not optimised to any particular
	microcontroller architecture. */

	/* uxTopReadyPriority holds the priority of the highest priority ready
	state task. */
	#define taskRECORD_READY_PRIORITY( uxPriority )														\
	{																									\
		if( ( uxPriority ) > uxTopReadyPriority )														\
		{																								\
			uxTopReadyPriority = ( uxPriority );														\
		}																								\
	} /* taskRECORD_READY_PRIORITY */

	/*-----------------------------------------------------------*/

	#define taskSELECT_HIGHEST_PRIORITY_TASK()															\
	{																									\
		/* Find the highest priority queue that contains ready tasks. */								\
		while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopReadyPriority ] ) ) )						\
		{																								\
			configASSERT( uxTopReadyPriority );															\
			--uxTopReadyPriority;																		\
		}																								\
																										\
		/* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of						\
		the	same priority get an equal share of the processor time. */									\
		listGET_OWNER_OF_NEXT_ENTRY( xTaskGetCurrentTaskHandle(), &( pxReadyTasksLists[ uxTopReadyPriority ] ) );		\
	} /* taskSELECT_HIGHEST_PRIORITY_TASK */

	/*-----------------------------------------------------------*/

	/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
	they are only required when a port optimised method of task selection is
	being used. */
	#define taskRESET_READY_PRIORITY( uxPriority )
	#define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )

#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

	/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
	performed in a way that is tailored to the particular microcontroller
	architecture being used. */

	/* A port optimised version is provided.  Call the port defined macros. */
	#define taskRECORD_READY_PRIORITY( uxPriority )	portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )

	/*-----------------------------------------------------------*/

	#define taskSELECT_HIGHEST_PRIORITY_TASK()														\
	{																								\
	UBaseType_t uxTopPriority;																		\
																									\
		/* Find the highest priority queue that contains ready tasks. */							\
		portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );								\
		configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 );		\
		listGET_OWNER_OF_NEXT_ENTRY( xTaskGetCurrentTaskHandle(), &( pxReadyTasksLists[ uxTopPriority ] ) );		\
	} /* taskSELECT_HIGHEST_PRIORITY_TASK() */

	/*-----------------------------------------------------------*/

	/* A port optimised version is provided, call it only if the TCB being reset
	is being referenced from a ready list.  If it is referenced from a delayed
	or suspended list then it won't be in a ready list. */
	#define taskRESET_READY_PRIORITY( uxPriority )														\
	{																									\
		if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 )	\
		{																								\
			portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );							\
		}																								\
	}

#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

/*-----------------------------------------------------------*/

/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
count overflows. */
#define taskSWITCH_DELAYED_LISTS()																	\
{																									\
	List_t *pxTemp;																					\
																									\
	/* The delayed tasks list should be empty when the lists are switched. */						\
	configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) );										\
																									\
	pxTemp = pxDelayedTaskList;																		\
	pxDelayedTaskList = pxOverflowDelayedTaskList;													\
	pxOverflowDelayedTaskList = pxTemp;																\
	xNumOfOverflows++;																				\
	prvResetNextTaskUnblockTime();																	\
}

/*-----------------------------------------------------------*/

/*
 * Place the task represented by pxTCB into the appropriate ready list for
 * the task.  It is inserted at the end of the list.
 */
#define prvAddTaskToReadyList( pxTCB )																\
	traceMOVED_TASK_TO_READY_STATE( pxTCB );														\
	taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority );												\
	vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xGenericListItem ) )
/*
 * Place the task represented by pxTCB which has been in a ready list before
 * into the appropriate ready list for the task.
 * It is inserted at the end of the list.
 */
#define prvReaddTaskToReadyList( pxTCB )                                                               \
   traceREADDED_TASK_TO_READY_STATE( pxTCB );                                                      \
   taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority );                                             \
   vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xGenericListItem ) )
/*-----------------------------------------------------------*/

#define tskCAN_RUN_HERE( cpuid ) ( cpuid==xPortGetCoreID() || cpuid==tskNO_AFFINITY )

/*
 * Several functions take an TaskHandle_t parameter that can optionally be NULL,
 * where NULL is used to indicate that the handle of the currently executing
 * task should be used in place of the parameter.  This macro simply checks to
 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
 */
/* ToDo: See if this still works for multicore. */
#define prvGetTCBFromHandle( pxHandle ) ( ( ( pxHandle ) == NULL ) ? ( TCB_t * ) xTaskGetCurrentTaskHandle() : ( TCB_t * ) ( pxHandle ) )

/* The item value of the event list item is normally used to hold the priority
of the task to which it belongs (coded to allow it to be held in reverse
priority order).  However, it is occasionally borrowed for other purposes.  It
is important its value is not updated due to a task priority change while it is
being used for another purpose.  The following bit definition is used to inform
the scheduler that the value should not be changed - in which case it is the
responsibility of whichever module is using the value to ensure it gets set back
to its original value when it is released. */
#if configUSE_16_BIT_TICKS == 1
	#define taskEVENT_LIST_ITEM_VALUE_IN_USE	0x8000U
#else
	#define taskEVENT_LIST_ITEM_VALUE_IN_USE	0x80000000UL
#endif

/* Callback function prototypes. --------------------------*/
#if configCHECK_FOR_STACK_OVERFLOW > 0
	extern void vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName );
#endif

#if configUSE_TICK_HOOK > 0
	extern void vApplicationTickHook( void );
#endif

#if  portFIRST_TASK_HOOK
	extern void vPortFirstTaskHook(TaskFunction_t taskfn);
#endif


/* File private functions. --------------------------------*/

/**
 * Utility task that simply returns pdTRUE if the task referenced by xTask is
 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
 * is in any other state.
 *
 * Caller must hold xTaskQueueMutex before calling this function.
 */
#if ( INCLUDE_vTaskSuspend == 1 )
	static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;
#endif /* INCLUDE_vTaskSuspend */

/*
 * Utility to ready all the lists used by the scheduler.  This is called
 * automatically upon the creation of the first task.
 */
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;

/*
 * The idle task, which as all tasks is implemented as a never ending loop.
 * The idle task is automatically created and added to the ready lists upon
 * creation of the first user task.
 *
 * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific
 * language extensions.  The equivalent prototype for this function is:
 *
 * void prvIdleTask( void *pvParameters );
 *
 */
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters );

/*
 * Utility to free all memory allocated by the scheduler to hold a TCB,
 * including the stack pointed to by the TCB.
 *
 * This does not free memory allocated by the task itself (i.e. memory
 * allocated by calls to pvPortMalloc from within the tasks application code).
 */
#if ( INCLUDE_vTaskDelete == 1 )

	static void prvDeleteTCB( TCB_t *pxTCB ) PRIVILEGED_FUNCTION;

#endif

//Function to call the Thread Local Storage Pointer Deletion Callbacks. Will be
//called during task deletion before prvDeleteTCB is called.
#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS )
	static void prvDeleteTLS( TCB_t *pxTCB );
#endif

/*
 * Used only by the idle task.  This checks to see if anything has been placed
 * in the list of tasks waiting to be deleted.  If so the task is cleaned up
 * and its TCB deleted.
 */
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;

/*
 * The currently executing task is entering the Blocked state.  Add the task to
 * either the current or the overflow delayed task list.
 */
static void prvAddCurrentTaskToDelayedList( const portBASE_TYPE xCoreID, const TickType_t xTimeToWake ) PRIVILEGED_FUNCTION;

/*
 * Fills an TaskStatus_t structure with information on each task that is
 * referenced from the pxList list (which may be a ready list, a delayed list,
 * a suspended list, etc.).
 *
 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
 * NORMAL APPLICATION CODE.
 */
#if ( configUSE_TRACE_FACILITY == 1 )

	static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState ) PRIVILEGED_FUNCTION;

#endif

/*
 * When a task is created, the stack of the task is filled with a known value.
 * This function determines the 'high water mark' of the task stack by
 * determining how much of the stack remains at the original preset value.
 */
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )

	static uint32_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;

#endif

/*
 * Return the amount of time, in ticks, that will pass before the kernel will
 * next move a task from the Blocked state to the Running state.
 *
 * This conditional compilation should use inequality to 0, not equality to 1.
 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
 * set to a value other than 1.
 */
#if ( configUSE_TICKLESS_IDLE != 0 )

	static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;

#endif

/*
 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
 * will exit the Blocked state.
 */
static void prvResetNextTaskUnblockTime( void );

#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )

	/*
	 * Helper function used to pad task names with spaces when printing out
	 * human readable tables of task information.
	 */
	static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName );

#endif

/*
 * Called after a Task_t structure has been allocated either statically or
 * dynamically to fill in the structure's members.
 */
static void prvInitialiseNewTask( 	TaskFunction_t pxTaskCode,
									const char * const pcName,
									const uint32_t ulStackDepth,
									void * const pvParameters,
									UBaseType_t uxPriority,
									TaskHandle_t * const pxCreatedTask,
									TCB_t *pxNewTCB,
									const MemoryRegion_t * const xRegions, const BaseType_t xCoreID) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */

/*
 * Called after a new task has been created and initialised to place the task
 * under the control of the scheduler.
 */
static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode, const BaseType_t xCoreID ) PRIVILEGED_FUNCTION;



/*-----------------------------------------------------------*/

/*
 * This routine tries to send an interrupt to another core if needed to make it execute a task
 * of higher priority. We try to figure out if needed first by inspecting the pxTCB of the
 * other CPU first. Specifically for Xtensa, we can do this because pxTCB is an atomic pointer. It
 * is possible that it is inaccurate because the other CPU just did a task switch, but in that case
 * at most a superfluous interrupt is generated.
*/
void taskYIELD_OTHER_CORE( BaseType_t xCoreID, UBaseType_t uxPriority )
{
	TCB_t *curTCB = pxCurrentTCB[xCoreID];
	BaseType_t i;

	if (xCoreID != tskNO_AFFINITY) {
		if ( curTCB->uxPriority < uxPriority ) {
			vPortYieldOtherCore( xCoreID );
		}
	}
	else
	{
		/* The task has no affinity. See if we can find a CPU to put it on.*/
		for (i=0; i<portNUM_PROCESSORS; i++) {
			if (i != xPortGetCoreID() && pxCurrentTCB[ i ]->uxPriority < uxPriority)
			{
				vPortYieldOtherCore( i );
				break;
			}
		}
	}
}

#if( configSUPPORT_STATIC_ALLOCATION == 1 )

	TaskHandle_t xTaskCreateStaticPinnedToCore(	TaskFunction_t pxTaskCode,
									const char * const pcName,
									const uint32_t ulStackDepth,
									void * const pvParameters,
									UBaseType_t uxPriority,
									StackType_t * const puxStackBuffer,
									StaticTask_t * const pxTaskBuffer,
                                    const BaseType_t xCoreID )
	{
	TCB_t *pxNewTCB;
	TaskHandle_t xReturn;

		configASSERT( portVALID_TCB_MEM(pxTaskBuffer) );
		configASSERT( portVALID_STACK_MEM(puxStackBuffer) );
		configASSERT( (xCoreID>=0 && xCoreID<portNUM_PROCESSORS) || (xCoreID==tskNO_AFFINITY) );

		if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
		{
			/* The memory used for the task's TCB and stack are passed into this
			function - use them. */
			pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
			pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;

			#if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
			{
				/* Tasks can be created statically or dynamically, so note this
				task was created statically in case the task is later deleted. */
				pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
			}
			#endif /* configSUPPORT_DYNAMIC_ALLOCATION */

			prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL, xCoreID );
			prvAddNewTaskToReadyList( pxNewTCB, pxTaskCode, xCoreID );
		}
		else
		{
			xReturn = NULL;
		}

		return xReturn;
	}

#endif /* SUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/

#if( portUSING_MPU_WRAPPERS == 1 )

	BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask )
	{
	TCB_t *pxNewTCB;
	BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;

		configASSERT( pxTaskDefinition->puxStackBuffer );

		if( pxTaskDefinition->puxStackBuffer != NULL )
		{
			/* Allocate space for the TCB.  Where the memory comes from depends
			on the implementation of the port malloc function and whether or
			not static allocation is being used. */
			pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) );

			if( pxNewTCB != NULL )
			{
				/* Store the stack location in the TCB. */
				pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;

				/* Tasks can be created statically or dynamically, so note
				this task had a statically allocated stack in case it is
				later deleted.  The TCB was allocated dynamically. */
				pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;

				prvInitialiseNewTask(	pxTaskDefinition->pvTaskCode,
										pxTaskDefinition->pcName,
										pxTaskDefinition->usStackDepth,
										pxTaskDefinition->pvParameters,
										pxTaskDefinition->uxPriority,
										pxCreatedTask, pxNewTCB,
										pxTaskDefinition->xRegions,
										tskNO_AFFINITY );

				prvAddNewTaskToReadyList( pxNewTCB, pxTaskDefinition->pvTaskCode, tskNO_AFFINITY );
				xReturn = pdPASS;
			}
		}

		return xReturn;
	}

	BaseType_t xTaskCreateRestrictedPinnedToCore( const TaskParameters_t * const pxTaskDefinition, TaskHandle_t *pxCreatedTask, const BaseType_t xCoreID)
	{
	TCB_t *pxNewTCB;
	BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;

		configASSERT( pxTaskDefinition->puxStackBuffer );

		if( pxTaskDefinition->puxStackBuffer != NULL )
		{
			/* Allocate space for the TCB.  Where the memory comes from depends
			on the implementation of the port malloc function and whether or
			not static allocation is being used. */
			pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) );

			if( pxNewTCB != NULL )
			{
				/* Store the stack location in the TCB. */
				pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;

				/* Tasks can be created statically or dynamically, so note
				this task had a statically allocated stack in case it is
				later deleted.  The TCB was allocated dynamically. */
				pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;

				prvInitialiseNewTask(	pxTaskDefinition->pvTaskCode,
										pxTaskDefinition->pcName,
										pxTaskDefinition->usStackDepth,
										pxTaskDefinition->pvParameters,
										pxTaskDefinition->uxPriority,
										pxCreatedTask, pxNewTCB,
										pxTaskDefinition->xRegions,
										tskNO_AFFINITY );

				prvAddNewTaskToReadyList( pxNewTCB, pxTaskDefinition->pvTaskCode, xCoreID );
				xReturn = pdPASS;
			}
		}

		return xReturn;
	}

#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/

#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )

	BaseType_t xTaskCreatePinnedToCore(	TaskFunction_t pxTaskCode,
							const char * const pcName,
							const uint32_t usStackDepth,
							void * const pvParameters,
							UBaseType_t uxPriority,
							TaskHandle_t * const pxCreatedTask,
                            const BaseType_t xCoreID )
	{
	TCB_t *pxNewTCB;
	BaseType_t xReturn;

		/* If the stack grows down then allocate the stack then the TCB so the stack
		does not grow into the TCB.  Likewise if the stack grows up then allocate
		the TCB then the stack. */
		#if( portSTACK_GROWTH > 0 )
		{
			/* Allocate space for the TCB.  Where the memory comes from depends on
			the implementation of the port malloc function and whether or not static
			allocation is being used. */
			pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) );

			if( pxNewTCB != NULL )
			{
				/* Allocate space for the stack used by the task being created.
				The base of the stack memory stored in the TCB so the task can
				be deleted later if required. */
				pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStackMem( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */

				if( pxNewTCB->pxStack == NULL )
				{
					/* Could not allocate the stack.  Delete the allocated TCB. */
					vPortFree( pxNewTCB );
					pxNewTCB = NULL;
				}
			}
		}
		#else /* portSTACK_GROWTH */
		{
		StackType_t *pxStack;

			/* Allocate space for the stack used by the task being created. */
			pxStack = ( StackType_t * ) pvPortMallocStackMem( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */

			if( pxStack != NULL )
			{
				/* Allocate space for the TCB. */
				pxNewTCB = ( TCB_t * ) pvPortMallocTcbMem( sizeof( TCB_t ) ); /*lint !e961 MISRA exception as the casts are only redundant for some paths. */

				if( pxNewTCB != NULL )
				{
					/* Store the stack location in the TCB. */
					pxNewTCB->pxStack = pxStack;
				}
				else
				{
					/* The stack cannot be used as the TCB was not created.  Free
					it again. */
					vPortFree( pxStack );
				}
			}
			else
			{
				pxNewTCB = NULL;
			}
		}
		#endif /* portSTACK_GROWTH */

		if( pxNewTCB != NULL )
		{
			#if( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
			{
				/* Tasks can be created statically or dynamically, so note this
				task was created dynamically in case it is later deleted. */
				pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
			}
			#endif /* configSUPPORT_STATIC_ALLOCATION */

			prvInitialiseNewTask( pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL, xCoreID );
			prvAddNewTaskToReadyList( pxNewTCB, pxTaskCode, xCoreID );
			xReturn = pdPASS;
		}
		else
		{
			xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
		}

		return xReturn;
	}

#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
/*-----------------------------------------------------------*/

static void prvInitialiseNewTask( 	TaskFunction_t pxTaskCode,
									const char * const pcName,
									const uint32_t ulStackDepth,
									void * const pvParameters,
									UBaseType_t uxPriority,
									TaskHandle_t * const pxCreatedTask,
									TCB_t *pxNewTCB,
									const MemoryRegion_t * const xRegions, const BaseType_t xCoreID ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
StackType_t *pxTopOfStack;
UBaseType_t x;

	#if( portUSING_MPU_WRAPPERS == 1 )
		/* Should the task be created in privileged mode? */
		BaseType_t xRunPrivileged;
		if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
		{
			xRunPrivileged = pdTRUE;
		}
		else
		{
			xRunPrivileged = pdFALSE;
		}
		uxPriority &= ~portPRIVILEGE_BIT;
	#endif /* portUSING_MPU_WRAPPERS == 1 */

	/* Avoid dependency on memset() if it is not required. */
	#if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )
	{
		/* Fill the stack with a known value to assist debugging. */
		( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
	}
	#endif /* ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) ) */

	/* Calculate the top of stack address.  This depends on whether the stack
	grows from high memory to low (as per the 80x86) or vice versa.
	portSTACK_GROWTH is used to make the result positive or negative as required
	by the port. */
	#if( portSTACK_GROWTH < 0 )
	{
		pxTopOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
		pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 MISRA exception.  Avoiding casts between pointers and integers is not practical.  Size differences accounted for using portPOINTER_SIZE_TYPE type. */

		/* Check the alignment of the calculated top of stack is correct. */
		configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );
		#if ( configENABLE_TASK_SNAPSHOT == 1 )
		{
			/* need stack end for core dumps */
			pxNewTCB->pxEndOfStack = pxTopOfStack;
		}
#endif
	}
	#else /* portSTACK_GROWTH */
	{
		pxTopOfStack = pxNewTCB->pxStack;

		/* Check the alignment of the stack buffer is correct. */
		configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );

		/* The other extreme of the stack space is required if stack checking is
		performed. */
		pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
	}
	#endif /* portSTACK_GROWTH */

	/* Store the task name in the TCB. */
	for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
	{
		pxNewTCB->pcTaskName[ x ] = pcName[ x ];

		/* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
		configMAX_TASK_NAME_LEN characters just in case the memory after the
		string is not accessible (extremely unlikely). */
		if( pcName[ x ] == 0x00 )
		{
			break;
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

	/* Ensure the name string is terminated in the case that the string length
	was greater or equal to configMAX_TASK_NAME_LEN. */
	pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';

	/* This is used as an array index so must ensure it's not too large.  First
	remove the privilege bit if one is present. */
	if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
	{
		uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}

	pxNewTCB->uxPriority = uxPriority;
	pxNewTCB->xCoreID = xCoreID;
	#if ( configUSE_MUTEXES == 1 )
	{
		pxNewTCB->uxBasePriority = uxPriority;
		pxNewTCB->uxMutexesHeld = 0;
	}
	#endif /* configUSE_MUTEXES */

	vListInitialiseItem( &( pxNewTCB->xGenericListItem ) );
	vListInitialiseItem( &( pxNewTCB->xEventListItem ) );

	/* Set the pxNewTCB as a link back from the ListItem_t.  This is so we can get
	back to	the containing TCB from a generic item in a list. */
	listSET_LIST_ITEM_OWNER( &( pxNewTCB->xGenericListItem ), pxNewTCB );

	/* Event lists are always in priority order. */
	listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
	listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );

	#if ( portCRITICAL_NESTING_IN_TCB == 1 )
	{
		pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
	}
	#endif /* portCRITICAL_NESTING_IN_TCB */

	#if ( configUSE_APPLICATION_TASK_TAG == 1 )
	{
		pxNewTCB->pxTaskTag = NULL;
	}
	#endif /* configUSE_APPLICATION_TASK_TAG */

	#if ( configGENERATE_RUN_TIME_STATS == 1 )
	{
		pxNewTCB->ulRunTimeCounter = 0UL;
	}
	#endif /* configGENERATE_RUN_TIME_STATS */

	#if ( portUSING_MPU_WRAPPERS == 1 )
	{
		vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
	}
	#else
	{
		/* Avoid compiler warning about unreferenced parameter. */
		( void ) xRegions;
	}
	#endif

	#if( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
	{
		for( x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
		{
			pxNewTCB->pvThreadLocalStoragePointers[ x ] = NULL;
			#if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS == 1)
			pxNewTCB->pvThreadLocalStoragePointersDelCallback[ x ] = NULL;
			#endif
		}
	}
	#endif

	#if ( configUSE_TASK_NOTIFICATIONS == 1 )
	{
		pxNewTCB->ulNotifiedValue = 0;
		pxNewTCB->eNotifyState = eNotWaitingNotification;
	}
	#endif

	#if ( configUSE_NEWLIB_REENTRANT == 1 )
	{
		/* Initialise this task's Newlib reent structure. */
		esp_reent_init(&pxNewTCB->xNewLib_reent);
	}
	#endif

	#if( INCLUDE_xTaskAbortDelay == 1 )
	{
		pxNewTCB->ucDelayAborted = pdFALSE;
	}
	#endif

	/* Initialize the TCB stack to look as if the task was already running,
	but had been interrupted by the scheduler.  The return address is set
	to the start of the task function. Once the stack has been initialised
	the	top of stack variable is updated. */
	#if( portUSING_MPU_WRAPPERS == 1 )
	{
		pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
	}
	#else /* portUSING_MPU_WRAPPERS */
	{
		pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
	}
	#endif /* portUSING_MPU_WRAPPERS */

	if( ( void * ) pxCreatedTask != NULL )
	{
		/* Pass the handle out in an anonymous way.  The handle can be used to
		change the created task's priority, delete the created task, etc.*/
		*pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}
}
/*-----------------------------------------------------------*/

static void prvAddNewTaskToReadyList( TCB_t *pxNewTCB, TaskFunction_t pxTaskCode, BaseType_t xCoreID )
{
	TCB_t *curTCB, *tcb0, *tcb1;

	/* Assure that xCoreID is valid or we'll have an out-of-bounds on pxCurrentTCB
	   You will assert here if e.g. you only have one CPU enabled in menuconfig and
	   are trying to start a task on core 1. */
	configASSERT( xCoreID == tskNO_AFFINITY || xCoreID < portNUM_PROCESSORS);

    /* Ensure interrupts don't access the task lists while the lists are being
	updated. */
	taskENTER_CRITICAL(&xTaskQueueMutex);
	{
		uxCurrentNumberOfTasks++;

		// Determine which core this task starts on
		if ( xCoreID == tskNO_AFFINITY )
		{
			if ( portNUM_PROCESSORS == 1 )
			{
				xCoreID = 0;
			}
			else
			{
				// if the task has no affinity, put it on either core if nothing is currently scheduled there. Failing that,
				// put it on the core where it will preempt the lowest priority running task. If neither of these are true,
				// queue it on the currently running core.
				tcb0 = pxCurrentTCB[0];
				tcb1 = pxCurrentTCB[1];
				if ( tcb0 == NULL )
				{
					xCoreID = 0;
				}
				else if ( tcb1 == NULL )
				{
					xCoreID = 1;
				}
				else if ( tcb0->uxPriority < pxNewTCB->uxPriority && tcb0->uxPriority < tcb1->uxPriority )
				{
					xCoreID = 0;
				}
				else if ( tcb1->uxPriority < pxNewTCB->uxPriority )
				{
					xCoreID = 1;
				}
				else
				{
					xCoreID = xPortGetCoreID(); // Both CPU have higher priority tasks running on them, so this won't run yet
				}
			}
		}

        // If nothing is running on this core, put the new task there now
		if( pxCurrentTCB[ xCoreID ] == NULL )
		{
			/* There are no other tasks, or all the other tasks are in
			the suspended state - make this the current task. */
			pxCurrentTCB[ xCoreID ] = pxNewTCB;

			if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
			{
#if portFIRST_TASK_HOOK
				if ( xPortGetCoreID() == 0 ) {
					vPortFirstTaskHook(pxTaskCode);
				}
#endif /* configFIRST_TASK_HOOK */
				/* This is the first task to be created so do the preliminary
				initialisation required.  We will not recover if this call
				fails, but we will report the failure. */
				prvInitialiseTaskLists();
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			/* If the scheduler is not already running, make this task the
			current task if it is the highest priority task to be created
			so far. */
			if( xSchedulerRunning == pdFALSE )
			{
				/* Scheduler isn't running yet. We need to determine on which CPU to run this task.
				   Schedule now if either nothing is scheduled yet or we can replace a task of lower prio. */
				if ( pxCurrentTCB[xCoreID] == NULL || pxCurrentTCB[xCoreID]->uxPriority <= pxNewTCB->uxPriority )
				{
					pxCurrentTCB[xCoreID] = pxNewTCB;
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}

		uxTaskNumber++;

		#if ( configUSE_TRACE_FACILITY == 1 )
		{
			/* Add a counter into the TCB for tracing only. */
			pxNewTCB->uxTCBNumber = uxTaskNumber;
		}
		#endif /* configUSE_TRACE_FACILITY */
		traceTASK_CREATE( pxNewTCB );

		prvAddTaskToReadyList( pxNewTCB );

		portSETUP_TCB( pxNewTCB );
	}

	taskEXIT_CRITICAL(&xTaskQueueMutex);

	if( xSchedulerRunning != pdFALSE )
	{
		taskENTER_CRITICAL(&xTaskQueueMutex);

		curTCB = pxCurrentTCB[ xCoreID ];
		/* Scheduler is running. If the created task is of a higher priority than an executing task
		   then it should run now.
		*/
		if( curTCB == NULL || curTCB->uxPriority < pxNewTCB->uxPriority )
		{
			if( xCoreID == xPortGetCoreID() )
			{
				taskYIELD_IF_USING_PREEMPTION();
			}
			else {
				taskYIELD_OTHER_CORE(xCoreID, pxNewTCB->uxPriority);
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}
}
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskDelete == 1 )

	void vTaskDelete( TaskHandle_t xTaskToDelete )
	{
	//The following vTaskDelete() is backported from FreeRTOS v9.0.0 and modified for SMP.
	//v9.0.0 vTaskDelete() will immediately free task memory if the task being deleted is
	//NOT currently running and not pinned to the other core. Otherwise, freeing of task memory
	//will still be delegated to the Idle Task.

	TCB_t *pxTCB;
	int core = xPortGetCoreID();	//Current core
	UBaseType_t free_now;	//Flag to indicate if task memory can be freed immediately

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			/* If null is passed in here then it is the calling task that is
			being deleted. */
			pxTCB = prvGetTCBFromHandle( xTaskToDelete );

			/* Remove task from the ready list. */
			if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
			{
				taskRESET_READY_PRIORITY( pxTCB->uxPriority );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			/* Is the task waiting on an event also? */
			if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
			{
				( void ) uxListRemove( &( pxTCB->xEventListItem ) );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			/* Increment the uxTaskNumber also so kernel aware debuggers can
			detect that the task lists need re-generating.  This is done before
			portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
			not return. */
			uxTaskNumber++;

			//If task to be deleted is currently running on either core or is pinned to the other core. Let Idle free memory
			if( pxTCB == pxCurrentTCB[ core ] ||
				(portNUM_PROCESSORS > 1 && pxTCB == pxCurrentTCB[ !core ]) ||
				(portNUM_PROCESSORS > 1 && pxTCB->xCoreID == (!core)) )
			{
				/* Deleting a currently running task. This cannot complete
				within the task itself, as a context switch to another task is
				required. Place the task in the termination list.  The idle task
				will check the termination list and free up any memory allocated
				by the scheduler for the TCB and stack of the deleted task. */
				vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xGenericListItem ) );

				/* Increment the ucTasksDeleted variable so the idle task knows
				there is a task that has been deleted and that it should therefore
				check the xTasksWaitingTermination list. */
				++uxTasksDeleted;

				/* The pre-delete hook is primarily for the Windows simulator,
				in which Windows specific clean up operations are performed,
				after which it is not possible to yield away from this task -
				hence xYieldPending is used to latch that a context switch is
				required. */
				portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );

				free_now = pdFALSE;		//Let Idle Task free task memory
			}
			else	//Task is not currently running and not pinned to the other core
			{
				--uxCurrentNumberOfTasks;

				/* Reset the next expected unblock time in case it referred to
				the task that has just been deleted. */
				prvResetNextTaskUnblockTime();
				free_now = pdTRUE;		//Set flag to free task memory immediately
			}

			traceTASK_DELETE( pxTCB );
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		if(free_now == pdTRUE){		//Free task memory. Outside critical section due to deletion callbacks
			#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS )
				prvDeleteTLS( pxTCB );	//Run deletion callbacks before deleting TCB
			#endif
			prvDeleteTCB( pxTCB );	//Must only be called after del cb
		}

		/* Force a reschedule if it is the currently running task that has just
		been deleted. */
		if( xSchedulerRunning != pdFALSE )
		{
			//No mux; no harm done if this misfires. The deleted task won't get scheduled anyway.
			if( pxTCB == pxCurrentTCB[ core ] )	//If task was currently running on this core
			{
				configASSERT( xTaskGetSchedulerState() != taskSCHEDULER_SUSPENDED )

				/* The pre-delete hook is primarily for the Windows simulator,
				in which Windows specific clean up operations are performed,
				after which it is not possible to yield away from this task -
				hence xYieldPending is used to latch that a context switch is
				required. */
				portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending[xPortGetCoreID()] );
				portYIELD_WITHIN_API();
			}
			else if ( portNUM_PROCESSORS > 1 && pxTCB == pxCurrentTCB[ !core] )	//If task was currently running on the other core
			{
				/* if task is running on the other CPU, force a yield on that CPU to take it off */
				vPortYieldOtherCore( !core );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
	}

#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskDelayUntil == 1 )

/* ToDo: Make this multicore-compatible. */
	void vTaskDelayUntil( TickType_t * const pxPreviousWakeTime, const TickType_t xTimeIncrement )
	{
	TickType_t xTimeToWake;
	BaseType_t xAlreadyYielded=pdFALSE, xShouldDelay = pdFALSE;

		configASSERT( pxPreviousWakeTime );
		configASSERT( ( xTimeIncrement > 0U ) );
		configASSERT( xTaskGetSchedulerState() != taskSCHEDULER_SUSPENDED );

		taskENTER_CRITICAL(&xTaskQueueMutex);
//		vTaskSuspendAll();
		{
			/* Minor optimisation.  The tick count cannot change in this
			block. */
			const TickType_t xConstTickCount = xTickCount;

			/* Generate the tick time at which the task wants to wake. */
			xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;

			if( xConstTickCount < *pxPreviousWakeTime )
			{
				/* The tick count has overflowed since this function was
				lasted called.  In this case the only time we should ever
				actually delay is if the wake time has also	overflowed,
				and the wake time is greater than the tick time.  When this
				is the case it is as if neither time had overflowed. */
				if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
				{
					xShouldDelay = pdTRUE;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				/* The tick time has not overflowed.  In this case we will
				delay if either the wake time has overflowed, and/or the
				tick time is less than the wake time. */
				if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
				{
					xShouldDelay = pdTRUE;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}

			/* Update the wake time ready for the next call. */
			*pxPreviousWakeTime = xTimeToWake;

			if( xShouldDelay != pdFALSE )
			{
				traceTASK_DELAY_UNTIL();

				/* Remove the task from the ready list before adding it to the
				blocked list as the same list item is used for both lists. */
				if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
				{
					/* The current task must be in a ready list, so there is
					no need to check, and the port reset macro can be called
					directly. */
					portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}

				prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
//		xAlreadyYielded = xTaskResumeAll();
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		/* Force a reschedule if xTaskResumeAll has not already done so, we may
		have put ourselves to sleep. */
		if( xAlreadyYielded == pdFALSE )
		{
			portYIELD_WITHIN_API();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

#endif /* INCLUDE_vTaskDelayUntil */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskDelay == 1 )
	void vTaskDelay( const TickType_t xTicksToDelay )
	{
	TickType_t xTimeToWake;
	BaseType_t xAlreadyYielded = pdFALSE;

		/* A delay time of zero just forces a reschedule. */
		if( xTicksToDelay > ( TickType_t ) 0U )
		{
			configASSERT( xTaskGetSchedulerState() != taskSCHEDULER_SUSPENDED );
			taskENTER_CRITICAL(&xTaskQueueMutex);
//			vTaskSuspendAll();
			{
				traceTASK_DELAY();

				/* A task that is removed from the event list while the
				scheduler is suspended will not get placed in the ready
				list or removed from the blocked list until the scheduler
				is resumed.

				This task cannot be in an event list as it is the currently
				executing task. */

				/* Calculate the time to wake - this may overflow but this is
				not a problem. */
				xTimeToWake = xTickCount + xTicksToDelay;

				/* We must remove ourselves from the ready list before adding
				ourselves to the blocked list as the same list item is used for
				both lists. */
				if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
				{
					/* The current task must be in a ready list, so there is
					no need to check, and the port reset macro can be called
					directly. */
					portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
				prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
			}
//			xAlreadyYielded = xTaskResumeAll();
			taskEXIT_CRITICAL(&xTaskQueueMutex);
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		/* Force a reschedule if xTaskResumeAll has not already done so, we may
		have put ourselves to sleep. */
		if( xAlreadyYielded == pdFALSE )
		{
			portYIELD_WITHIN_API();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

#endif /* INCLUDE_vTaskDelay */
/*-----------------------------------------------------------*/

#if ( INCLUDE_eTaskGetState == 1 )
	eTaskState eTaskGetState( TaskHandle_t xTask )
	{
	eTaskState eReturn;
	List_t *pxStateList;
	const TCB_t * const pxTCB = ( TCB_t * ) xTask;
		TCB_t * curTCBcurCore = xTaskGetCurrentTaskHandle();
		TCB_t * curTCBothrCore = xTaskGetCurrentTaskHandleForCPU(!xPortGetCoreID());    //Returns NULL if Unicore

		configASSERT( pxTCB );

		if( pxTCB == curTCBcurCore || pxTCB == curTCBothrCore )
		{
			/* The task calling this function is querying its own state. */
			eReturn = eRunning;
		}
		else
		{
			taskENTER_CRITICAL(&xTaskQueueMutex);
			{
				pxStateList = ( List_t * ) listLIST_ITEM_CONTAINER( &( pxTCB->xGenericListItem ) );
			}
			taskEXIT_CRITICAL(&xTaskQueueMutex);

			if( ( pxStateList == pxDelayedTaskList ) || ( pxStateList == pxOverflowDelayedTaskList ) )
			{
				/* The task being queried is referenced from one of the Blocked
				lists. */
				eReturn = eBlocked;
			}

			#if ( INCLUDE_vTaskSuspend == 1 )
				else if( pxStateList == &xSuspendedTaskList )
				{
					/* The task being queried is referenced from the suspended
					list.  Is it genuinely suspended or is it block
					indefinitely? */
					if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
					{
						eReturn = eSuspended;
					}
					else
					{
						eReturn = eBlocked;
					}
				}
			#endif

			#if ( INCLUDE_vTaskDelete == 1 )
				else if( pxStateList == &xTasksWaitingTermination )
				{
					/* The task being queried is referenced from the deleted
					tasks list. */
					eReturn = eDeleted;
				}
			#endif

			else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
			{
				/* If the task is not in any other state, it must be in the
				Ready (including pending ready) state. */
				eReturn = eReady;
			}
		}

		return eReturn;
	} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */

#endif /* INCLUDE_eTaskGetState */
/*-----------------------------------------------------------*/

#if ( INCLUDE_uxTaskPriorityGet == 1 )
	UBaseType_t uxTaskPriorityGet( TaskHandle_t xTask )
	{
	TCB_t *pxTCB;
	UBaseType_t uxReturn;

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			/* If null is passed in here then we are changing the
			priority of the calling function. */
			pxTCB = prvGetTCBFromHandle( xTask );
			uxReturn = pxTCB->uxPriority;
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		return uxReturn;
	}

#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/

#if ( INCLUDE_uxTaskPriorityGet == 1 )
	UBaseType_t uxTaskPriorityGetFromISR( TaskHandle_t xTask )
	{
	TCB_t *pxTCB;
	UBaseType_t uxReturn;

		taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
		{
			/* If null is passed in here then it is the priority of the calling
			task that is being queried. */
			pxTCB = prvGetTCBFromHandle( xTask );
			uxReturn = pxTCB->uxPriority;
		}
		taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);

		return uxReturn;
	}

#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskPrioritySet == 1 )

	void vTaskPrioritySet( TaskHandle_t xTask, UBaseType_t uxNewPriority )
	{
	TCB_t *pxTCB;
	UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
	BaseType_t xYieldRequired = pdFALSE;

		configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );

		/* Ensure the new priority is valid. */
		if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
		{
			uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			/* If null is passed in here then it is the priority of the calling
			task that is being changed. */
			pxTCB = prvGetTCBFromHandle( xTask );

			traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );

			#if ( configUSE_MUTEXES == 1 )
			{
				uxCurrentBasePriority = pxTCB->uxBasePriority;
			}
			#else
			{
				uxCurrentBasePriority = pxTCB->uxPriority;
			}
			#endif

			if( uxCurrentBasePriority != uxNewPriority )
			{
				/* The priority change may have readied a task of higher
				priority than the calling task. */
				if( uxNewPriority > uxCurrentBasePriority )
				{
					if( pxTCB != pxCurrentTCB[ xPortGetCoreID() ] )
					{
						/* The priority of a task other than the currently
						running task is being raised.  Is the priority being
						raised above that of the running task? */
						if ( tskCAN_RUN_HERE(pxTCB->xCoreID) && uxNewPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
						{
							xYieldRequired = pdTRUE;
						}
						else if ( pxTCB->xCoreID != xPortGetCoreID() )
						{
							taskYIELD_OTHER_CORE( pxTCB->xCoreID, uxNewPriority );
						}
						else
						{
							mtCOVERAGE_TEST_MARKER();
						}
					}
					else
					{
						/* The priority of the running task is being raised,
						but the running task must already be the highest
						priority task able to run so no yield is required. */
					}
				}
				else if( pxTCB == pxCurrentTCB[ xPortGetCoreID() ] )
				{
					/* Setting the priority of the running task down means
					there may now be another task of higher priority that
					is ready to execute. */
					xYieldRequired = pdTRUE;
				}
				else
				{
					/* Setting the priority of any other task down does not
					require a yield as the running task must be above the
					new priority of the task being modified. */
				}

				/* Remember the ready list the task might be referenced from
				before its uxPriority member is changed so the
				taskRESET_READY_PRIORITY() macro can function correctly. */
				uxPriorityUsedOnEntry = pxTCB->uxPriority;

				#if ( configUSE_MUTEXES == 1 )
				{
					/* Only change the priority being used if the task is not
					currently using an inherited priority. */
					if( pxTCB->uxBasePriority == pxTCB->uxPriority )
					{
						pxTCB->uxPriority = uxNewPriority;
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}

					/* The base priority gets set whatever. */
					pxTCB->uxBasePriority = uxNewPriority;
				}
				#else
				{
					pxTCB->uxPriority = uxNewPriority;
				}
				#endif

				/* Only reset the event list item value if the value is not
				being used for anything else. */
				if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
				{
					listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}

				/* If the task is in the blocked or suspended list we need do
				nothing more than change it's priority variable. However, if
				the task is in a ready list it needs to be removed and placed
				in the list appropriate to its new priority. */
				if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
				{
					/* The task is currently in its ready list - remove before adding
					it to it's new ready list.  As we are in a critical section we
					can do this even if the scheduler is suspended. */
					if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
					{
						/* It is known that the task is in its ready list so
						there is no need to check again and the port level
						reset macro can be called directly. */
						portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
                    prvReaddTaskToReadyList( pxTCB );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}

				if( xYieldRequired == pdTRUE )
				{
					taskYIELD_IF_USING_PREEMPTION();
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}

				/* Remove compiler warning about unused variables when the port
				optimised task selection is not being used. */
				( void ) uxPriorityUsedOnEntry;
			}
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);
	}

#endif /* INCLUDE_vTaskPrioritySet */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskSuspend == 1 )
	void vTaskSuspend( TaskHandle_t xTaskToSuspend )
	{
	TCB_t *pxTCB;
        TCB_t *curTCB;

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			/* If null is passed in here then it is the running task that is
			being suspended. */
			pxTCB = prvGetTCBFromHandle( xTaskToSuspend );

			traceTASK_SUSPEND( pxTCB );

			/* Remove task from the ready/delayed list and place in the
			suspended list. */
			if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
			{
				taskRESET_READY_PRIORITY( pxTCB->uxPriority );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			/* Is the task waiting on an event also? */
			if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
			{
				( void ) uxListRemove( &( pxTCB->xEventListItem ) );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
            traceMOVED_TASK_TO_SUSPENDED_LIST(pxTCB);
			vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) );
			curTCB = pxCurrentTCB[ xPortGetCoreID() ];
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		if( pxTCB == curTCB )
		{
			if( xSchedulerRunning != pdFALSE )
			{
				/* The current task has just been suspended. */
				configASSERT( xTaskGetSchedulerState() != taskSCHEDULER_SUSPENDED );
				portYIELD_WITHIN_API();
			}
			else
			{
				/* The scheduler is not running, but the task that was pointed
				to by pxCurrentTCB has just been suspended and pxCurrentTCB
				must be adjusted to point to a different task. */
				if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks )
				{
					/* No other tasks are ready, so set pxCurrentTCB back to
					NULL so when the next task is created pxCurrentTCB will
					be set to point to it no matter what its relative priority
					is. */
					taskENTER_CRITICAL(&xTaskQueueMutex);
					pxCurrentTCB[ xPortGetCoreID() ] = NULL;
					taskEXIT_CRITICAL(&xTaskQueueMutex);
				}
				else
				{
					vTaskSwitchContext();
				}
			}
		}
		else
		{
			if( xSchedulerRunning != pdFALSE )
			{
				/* A task other than the currently running task was suspended,
				reset the next expected unblock time in case it referred to the
				task that is now in the Suspended state. */
				taskENTER_CRITICAL(&xTaskQueueMutex);
				{
					prvResetNextTaskUnblockTime();
				}
				taskEXIT_CRITICAL(&xTaskQueueMutex);
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
	}

#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskSuspend == 1 )
	static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
	{
	BaseType_t xReturn = pdFALSE;
	const TCB_t * const pxTCB = ( TCB_t * ) xTask;

		/* Accesses xPendingReadyList so must be called from a critical
		   section (caller is required to hold xTaskQueueMutex). */

		/* It does not make sense to check if the calling task is suspended. */
		configASSERT( xTask );

		/* Is the task being resumed actually in the suspended list? */
		if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xGenericListItem ) ) != pdFALSE )
		{
			/* Has the task already been resumed from within an ISR? */
			if( listIS_CONTAINED_WITHIN( &xPendingReadyList[ xPortGetCoreID() ], &( pxTCB->xEventListItem ) ) == pdFALSE )
			{
				/* Is it in the suspended list because it is in the	Suspended
				state, or because is is blocked with no timeout? */
				if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE )
				{
					xReturn = pdTRUE;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		return xReturn;
	} /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */

#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskSuspend == 1 )

	void vTaskResume( TaskHandle_t xTaskToResume )
	{
	TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;

		/* It does not make sense to resume the calling task. */
		configASSERT( xTaskToResume );

		taskENTER_CRITICAL(&xTaskQueueMutex);
		/* The parameter cannot be NULL as it is impossible to resume the
		currently executing task. */
		if( ( pxTCB != NULL ) && ( pxTCB != pxCurrentTCB[ xPortGetCoreID() ] ) )
		{
			{
				if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
				{
					traceTASK_RESUME( pxTCB );

					/* As we are in a critical section we can access the ready
					lists even if the scheduler is suspended. */
					( void ) uxListRemove(  &( pxTCB->xGenericListItem ) );
					prvAddTaskToReadyList( pxTCB );

					/* We may have just resumed a higher priority task. */
					if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
					{
						/* This yield may not cause the task just resumed to run,
						but will leave the lists in the correct state for the
						next yield. */
						taskYIELD_IF_USING_PREEMPTION();
					}
					else if( pxTCB->xCoreID != xPortGetCoreID() )
					{
						taskYIELD_OTHER_CORE( pxTCB->xCoreID, pxTCB->uxPriority );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);
	}

#endif /* INCLUDE_vTaskSuspend */

/*-----------------------------------------------------------*/

#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )

	BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
	{
	BaseType_t xYieldRequired = pdFALSE;
	TCB_t * const pxTCB = ( TCB_t * ) xTaskToResume;

		configASSERT( xTaskToResume );

		taskENTER_CRITICAL_ISR(&xTaskQueueMutex);

		{
			if( prvTaskIsTaskSuspended( pxTCB ) == pdTRUE )
			{
				traceTASK_RESUME_FROM_ISR( pxTCB );

				/* Check the ready lists can be accessed. */
				if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
				{
					/* Ready lists can be accessed so move the task from the
					suspended list to the ready list directly. */
					( void ) uxListRemove(  &( pxTCB->xGenericListItem ) );
					prvAddTaskToReadyList( pxTCB );

					if( tskCAN_RUN_HERE( pxTCB->xCoreID ) && pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
					{
						xYieldRequired = pdTRUE;
					}
					else if ( pxTCB->xCoreID != xPortGetCoreID() )
					{
						taskYIELD_OTHER_CORE( pxTCB->xCoreID, pxTCB->uxPriority);
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
				}
				else
				{
					/* The delayed or ready lists cannot be accessed so the task
					is held in the pending ready list until the scheduler is
					unsuspended. */
					vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) );
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);

		return xYieldRequired;
	}

#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
/*-----------------------------------------------------------*/

void vTaskStartScheduler( void )
{
BaseType_t xReturn;
BaseType_t i;

	/* Add the per-core idle tasks at the lowest priority. */
	for ( i=0; i<portNUM_PROCESSORS; i++) {
		//Generate idle task name
		char cIdleName[configMAX_TASK_NAME_LEN];
		snprintf(cIdleName, configMAX_TASK_NAME_LEN, "IDLE%d", i);
		#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )
		{
			/* Create the idle task, storing its handle in xIdleTaskHandle so it can
			be returned by the xTaskGetIdleTaskHandle() function. */
			xReturn = xTaskCreatePinnedToCore( prvIdleTask, cIdleName, tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), &xIdleTaskHandle[i], i ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
		}
		#else
		{
			/* Create the idle task without storing its handle. */
			xReturn = xTaskCreatePinnedToCore( prvIdleTask, cIdleName, tskIDLE_STACK_SIZE, ( void * ) NULL, ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), NULL, i);  /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
		}
		#endif /* INCLUDE_xTaskGetIdleTaskHandle */
	}

	#if ( configUSE_TIMERS == 1 )
	{
		if( xReturn == pdPASS )
		{
			xReturn = xTimerCreateTimerTask();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	#endif /* configUSE_TIMERS */

	if( xReturn == pdPASS )
	{
		/* Interrupts are turned off here, to ensure a tick does not occur
		before or during the call to xPortStartScheduler().  The stacks of
		the created tasks contain a status word with interrupts switched on
		so interrupts will automatically get re-enabled when the first task
		starts to run. */
		portDISABLE_INTERRUPTS();


		xTickCount = ( TickType_t ) 0U;

		/* If configGENERATE_RUN_TIME_STATS is defined then the following
		macro must be defined to configure the timer/counter used to generate
		the run time counter time base. */
		portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();
		xSchedulerRunning = pdTRUE;

		/* Setting up the timer tick is hardware specific and thus in the
		portable interface. */
		if( xPortStartScheduler() != pdFALSE )
		{
			/* Should not reach here as if the scheduler is running the
			function will not return. */
		}
		else
		{
			/* Should only reach here if a task calls xTaskEndScheduler(). */
		}
	}
	else
	{
		/* This line will only be reached if the kernel could not be started,
		because there was not enough FreeRTOS heap to create the idle task
		or the timer task. */
		configASSERT( xReturn );
	}
}
/*-----------------------------------------------------------*/

void vTaskEndScheduler( void )
{
	/* Stop the scheduler interrupts and call the portable scheduler end
	routine so the original ISRs can be restored if necessary.  The port
	layer must ensure interrupts enable	bit is left in the correct state. */
	portDISABLE_INTERRUPTS();
	xSchedulerRunning = pdFALSE;
	vPortEndScheduler();
}
/*----------------------------------------------------------*/


#if ( configUSE_NEWLIB_REENTRANT == 1 )
//Return global reent struct if FreeRTOS isn't running,
struct _reent* __getreent() {
	//No lock needed because if this changes, we won't be running anymore.
	TCB_t *currTask=xTaskGetCurrentTaskHandle();
	if (currTask==NULL) {
		//No task running. Return global struct.
		return _GLOBAL_REENT;
	} else {
		//We have a task; return its reentrant struct.
		return &currTask->xNewLib_reent;
	}
}
#endif


void vTaskSuspendAll( void )
{
	/* A critical section is not required as the variable is of type
	BaseType_t.  Please read Richard Barry's reply in the following link to a
	post in the FreeRTOS support forum before reporting this as a bug! -
	http://goo.gl/wu4acr */
	unsigned state;

	state = portENTER_CRITICAL_NESTED();
	++uxSchedulerSuspended[ xPortGetCoreID() ];
	portEXIT_CRITICAL_NESTED(state);
}
/*----------------------------------------------------------*/

#if ( configUSE_TICKLESS_IDLE != 0 )

#if ( portNUM_PROCESSORS > 1 )

	static BaseType_t xHaveReadyTasks()
	{
		for (int i = tskIDLE_PRIORITY + 1; i < configMAX_PRIORITIES; ++i)
		{
			if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ i ] ) ) > 0 )
			{
				return pdTRUE;
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		return pdFALSE;
	}

#endif // portNUM_PROCESSORS > 1

	static TickType_t prvGetExpectedIdleTime( void )
	{
	TickType_t xReturn;


		taskENTER_CRITICAL(&xTaskQueueMutex);
		if( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority > tskIDLE_PRIORITY )
		{
			xReturn = 0;
		}
#if portNUM_PROCESSORS > 1
		/* This function is called from Idle task; in single core case this
		 * means that no higher priority tasks are ready to run, and we can
		 * enter sleep. In SMP case, there might be ready tasks waiting for
		 * the other CPU, so need to check all ready lists.
		 */
		else if( xHaveReadyTasks() )
		{
			xReturn = 0;
		}
#endif // portNUM_PROCESSORS > 1
		else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > portNUM_PROCESSORS )
		{
			/* There are other idle priority tasks in the ready state.  If
			time slicing is used then the very next tick interrupt must be
			processed. */
			xReturn = 0;
		}
		else
		{
			xReturn = xNextTaskUnblockTime - xTickCount;
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		return xReturn;
	}

#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/

BaseType_t xTaskResumeAll( void )
{
TCB_t *pxTCB;
BaseType_t xAlreadyYielded = pdFALSE;

	/* If scheduler state is `taskSCHEDULER_RUNNING` then this function does not match a
	previous call to vTaskSuspendAll(). */
	configASSERT( xTaskGetSchedulerState() != taskSCHEDULER_RUNNING );
	/* It is possible that an ISR caused a task to be removed from an event
	list while the scheduler was suspended.  If this was the case then the
	removed task will have been added to the xPendingReadyList.  Once the
	scheduler has been resumed it is safe to move all the pending ready
	tasks from this list into their appropriate ready list. */

	taskENTER_CRITICAL(&xTaskQueueMutex);
	{
		--uxSchedulerSuspended[ xPortGetCoreID() ];

		if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
		{
			if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
			{
				/* Move any readied tasks from the pending list into the
				appropriate ready list. */
				while( listLIST_IS_EMPTY( &xPendingReadyList[ xPortGetCoreID() ] ) == pdFALSE )
				{
					pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList[ xPortGetCoreID() ] ) );
					( void ) uxListRemove( &( pxTCB->xEventListItem ) );
					( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
					prvAddTaskToReadyList( pxTCB );

					/* If the moved task has a priority higher than the current
					task then a yield must be performed. */
					if ( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
					{
						/* We can schedule the awoken task on this CPU. */
						xYieldPending[xPortGetCoreID()] = pdTRUE;
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
				}

				/* If any ticks occurred while the scheduler was suspended then
				they should be processed now.  This ensures the tick count does
				not	slip, and that any delayed tasks are resumed at the correct
				time. */
				if( uxPendedTicks > ( UBaseType_t ) 0U )
				{
					while( uxPendedTicks > ( UBaseType_t ) 0U )
					{
						if( xTaskIncrementTick() != pdFALSE )
						{
							xYieldPending[ xPortGetCoreID() ] = pdTRUE;
						}
						else
						{
							mtCOVERAGE_TEST_MARKER();
						}
						--uxPendedTicks;
					}
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}

				if( xYieldPending[ xPortGetCoreID() ] == pdTRUE )
				{
					#if( configUSE_PREEMPTION != 0 )
					{
						xAlreadyYielded = pdTRUE;
					}
					#endif
					taskYIELD_IF_USING_PREEMPTION();
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	taskEXIT_CRITICAL(&xTaskQueueMutex);

	return xAlreadyYielded;
}
/*-----------------------------------------------------------*/

TickType_t xTaskGetTickCount( void )
{
	return xTickCount;
}
/*-----------------------------------------------------------*/

TickType_t xTaskGetTickCountFromISR( void )
{
	return xTickCount;
}
/*-----------------------------------------------------------*/

UBaseType_t uxTaskGetNumberOfTasks( void )
{
	/* A critical section is not required because the variables are of type
	BaseType_t. */
	return uxCurrentNumberOfTasks;
}
/*-----------------------------------------------------------*/

#if ( INCLUDE_pcTaskGetTaskName == 1 )
	char *pcTaskGetTaskName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
	{
	TCB_t *pxTCB;

		/* If null is passed in here then the name of the calling task is being queried. */
		pxTCB = prvGetTCBFromHandle( xTaskToQuery );
		configASSERT( pxTCB );
		return &( pxTCB->pcTaskName[ 0 ] );
	}

#endif /* INCLUDE_pcTaskGetTaskName */
/*-----------------------------------------------------------*/

#if ( configUSE_TRACE_FACILITY == 1 )

	UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray, const UBaseType_t uxArraySize, uint32_t * const pulTotalRunTime )
	{
	UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			/* Is there a space in the array for each task in the system? */
			if( uxArraySize >= uxCurrentNumberOfTasks )
			{
				/* Fill in an TaskStatus_t structure with information on each
				task in the Ready state. */
				do
				{
					uxQueue--;
					uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );

				} while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */

				/* Fill in an TaskStatus_t structure with information on each
				task in the Blocked state. */
				uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
				uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );

				#if( INCLUDE_vTaskDelete == 1 )
				{
					/* Fill in an TaskStatus_t structure with information on
					each task that has been deleted but not yet cleaned up. */
					uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
				}
				#endif

				#if ( INCLUDE_vTaskSuspend == 1 )
				{
					/* Fill in an TaskStatus_t structure with information on
					each task in the Suspended state. */
					uxTask += prvListTaskWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
				}
				#endif

				#if ( configGENERATE_RUN_TIME_STATS == 1)
				{
					if( pulTotalRunTime != NULL )
					{
						#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
							portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
						#else
							*pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
						#endif
					}
				}
				#else
				{
					if( pulTotalRunTime != NULL )
					{
						*pulTotalRunTime = 0;
					}
				}
				#endif
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);
		return uxTask;
	}

#endif /* configUSE_TRACE_FACILITY */
/*----------------------------------------------------------*/

#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )

	TaskHandle_t xTaskGetIdleTaskHandle( void )
	{
		/* If xTaskGetIdleTaskHandle() is called before the scheduler has been
		started, then xIdleTaskHandle will be NULL. */
		configASSERT( ( xIdleTaskHandle[ xPortGetCoreID() ] != NULL ) );
		return xIdleTaskHandle[ xPortGetCoreID() ];
	}

	TaskHandle_t xTaskGetIdleTaskHandleForCPU( UBaseType_t cpuid )
	{
	    TaskHandle_t xReturn = NULL;
	    /* If xTaskGetIdleTaskHandleForCPU() is called before the scheduler has been
        started, then xIdleTaskHandle will be NULL. */
	    if (cpuid < portNUM_PROCESSORS) {
	        configASSERT( ( xIdleTaskHandle[ cpuid ] != NULL ) );
	        xReturn = xIdleTaskHandle[ cpuid ];
	    }
	    return xReturn;
	}

#endif /* INCLUDE_xTaskGetIdleTaskHandle */
/*----------------------------------------------------------*/

/* This conditional compilation should use inequality to 0, not equality to 1.
This is to ensure vTaskStepTick() is available when user defined low power mode
implementations require configUSE_TICKLESS_IDLE to be set to a value other than
1. */
#if ( configUSE_TICKLESS_IDLE != 0 )

	void vTaskStepTick( const TickType_t xTicksToJump )
	{
		/* Correct the tick count value after a period during which the tick
		was suppressed.  Note this does *not* call the tick hook function for
		each stepped tick. */
		portENTER_CRITICAL( &xTaskQueueMutex );
		configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
		xTickCount += xTicksToJump;
		portEXIT_CRITICAL( &xTaskQueueMutex );
		traceINCREASE_TICK_COUNT( xTicksToJump );
	}

#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/

BaseType_t xTaskIncrementTick( void )
{
TCB_t * pxTCB;
TickType_t xItemValue;
BaseType_t xSwitchRequired = pdFALSE;

	/* Called by the portable layer each time a tick interrupt occurs.
	Increments the tick then checks to see if the new tick value will cause any
	tasks to be unblocked. */

	/* Only allow core 0 increase the tick count in the case of xPortSysTickHandler processing. */
	/* And allow core 0 and core 1 to unwind uxPendedTicks during xTaskResumeAll. */

	if ( xPortInIsrContext() )
	{
		#if ( configUSE_TICK_HOOK == 1 )
		vApplicationTickHook();
		#endif /* configUSE_TICK_HOOK */
		#if ( CONFIG_FREERTOS_LEGACY_HOOKS == 1 )
		esp_vApplicationTickHook();
		#endif /* CONFIG_FREERTOS_LEGACY_HOOKS */

		if (xPortGetCoreID() == 1 )
		{
			return pdTRUE;
		}
	}


	traceTASK_INCREMENT_TICK( xTickCount );

	if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
	{
		taskENTER_CRITICAL_ISR( &xTaskQueueMutex );
		/* Increment the RTOS tick, switching the delayed and overflowed
		delayed lists if it wraps to 0. */
		++xTickCount;
		{
			/* Minor optimisation.  The tick count cannot change in this
			block. */
			const TickType_t xConstTickCount = xTickCount;

			if( xConstTickCount == ( TickType_t ) 0U )
			{
				taskSWITCH_DELAYED_LISTS();
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			/* See if this tick has made a timeout expire.  Tasks are stored in
			the	queue in the order of their wake time - meaning once one task
			has been found whose block time has not expired there is no need to
			look any further down the list. */
			if( xConstTickCount >= xNextTaskUnblockTime )
			{
				for( ;; )
				{
					if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
					{
						/* The delayed list is empty.  Set xNextTaskUnblockTime
						to the maximum possible value so it is extremely
						unlikely that the
						if( xTickCount >= xNextTaskUnblockTime ) test will pass
						next time through. */
						xNextTaskUnblockTime = portMAX_DELAY;
						break;
					}
					else
					{
						/* The delayed list is not empty, get the value of the
						item at the head of the delayed list.  This is the time
						at which the task at the head of the delayed list must
						be removed from the Blocked state. */
						pxTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
						xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xGenericListItem ) );

						if( xConstTickCount < xItemValue )
						{
							/* It is not time to unblock this item yet, but the
							item value is the time at which the task at the head
							of the blocked list must be removed from the Blocked
							state -	so record the item value in
							xNextTaskUnblockTime. */
							xNextTaskUnblockTime = xItemValue;
							break;
						}
						else
						{
							mtCOVERAGE_TEST_MARKER();
						}

						/* It is time to remove the item from the Blocked state. */
						( void ) uxListRemove( &( pxTCB->xGenericListItem ) );

						/* Is the task waiting on an event also?  If so remove
						it from the event list. */
						if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
						{
							( void ) uxListRemove( &( pxTCB->xEventListItem ) );
						}
						else
						{
							mtCOVERAGE_TEST_MARKER();
						}

						/* Place the unblocked task into the appropriate ready
						list. */
						prvAddTaskToReadyList( pxTCB );

						/* A task being unblocked cannot cause an immediate
						context switch if preemption is turned off. */
						#if (  configUSE_PREEMPTION == 1 )
						{
							/* Preemption is on, but a context switch should
							only be performed if the unblocked task has a
							priority that is equal to or higher than the
							currently executing task. */
							if( pxTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
							{
								xSwitchRequired = pdTRUE;
							}
							else
							{
								mtCOVERAGE_TEST_MARKER();
							}
						}
						#endif /* configUSE_PREEMPTION */
					}
				}
			}
		}

		/* Tasks of equal priority to the currently running task will share
		processing time (time slice) if preemption is on, and the application
		writer has not explicitly turned time slicing off. */
		#if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
		{
			if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ] ) ) > ( UBaseType_t ) 1 )
			{
				xSwitchRequired = pdTRUE;
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */

		taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
	}
	else
	{
		++uxPendedTicks;
	}

	#if ( configUSE_PREEMPTION == 1 )
	{
		if( xYieldPending [ xPortGetCoreID() ] != pdFALSE )
		{
			xSwitchRequired = pdTRUE;
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	#endif /* configUSE_PREEMPTION */

	return xSwitchRequired;
}
/*-----------------------------------------------------------*/

#if ( configUSE_APPLICATION_TASK_TAG == 1 )

	void vTaskSetApplicationTaskTag( TaskHandle_t xTask, TaskHookFunction_t pxHookFunction )
	{
	TCB_t *xTCB;

		/* If xTask is NULL then it is the task hook of the calling task that is
		getting set. */
		if( xTask == NULL )
		{
			xTCB = ( TCB_t * ) pxCurrentTCB[ xPortGetCoreID() ];
		}
		else
		{
			xTCB = ( TCB_t * ) xTask;
		}

		/* Save the hook function in the TCB.  A critical section is required as
		the value can be accessed from an interrupt. */
		taskENTER_CRITICAL(&xTaskQueueMutex);
			xTCB->pxTaskTag = pxHookFunction;
		taskEXIT_CRITICAL(&xTaskQueueMutex);
	}

#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/

#if ( configUSE_APPLICATION_TASK_TAG == 1 )

	TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
	{
	TCB_t *xTCB;
	TaskHookFunction_t xReturn;

		/* If xTask is NULL then we are setting our own task hook. */
		if( xTask == NULL )
		{
			xTCB = ( TCB_t * ) xTaskGetCurrentTaskHandle();
		}
		else
		{
			xTCB = ( TCB_t * ) xTask;
		}

		/* Save the hook function in the TCB.  A critical section is required as
		the value can be accessed from an interrupt. */
		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			xReturn = xTCB->pxTaskTag;
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		return xReturn;
	}

#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/

#if ( configUSE_APPLICATION_TASK_TAG == 1 )

	BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask, void *pvParameter )
	{
	TCB_t *xTCB;
	BaseType_t xReturn;

		/* If xTask is NULL then we are calling our own task hook. */
		if( xTask == NULL )
		{
			xTCB = ( TCB_t * ) xTaskGetCurrentTaskHandle();
		}
		else
		{
			xTCB = ( TCB_t * ) xTask;
		}

		if( xTCB->pxTaskTag != NULL )
		{
			xReturn = xTCB->pxTaskTag( pvParameter );
		}
		else
		{
			xReturn = pdFAIL;
		}

		return xReturn;
	}

#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/

void vTaskSwitchContext( void )
{
	//Theoretically, this is only called from either the tick interrupt or the crosscore interrupt, so disabling
	//interrupts shouldn't be necessary anymore. Still, for safety we'll leave it in for now.
	int irqstate=portENTER_CRITICAL_NESTED();
	tskTCB * pxTCB;
	if( uxSchedulerSuspended[ xPortGetCoreID() ] != ( UBaseType_t ) pdFALSE )
	{
		/* The scheduler is currently suspended - do not allow a context
		switch. */
		xYieldPending[ xPortGetCoreID() ] = pdTRUE;
	}
	else
	{
		xYieldPending[ xPortGetCoreID() ] = pdFALSE;
        xSwitchingContext[ xPortGetCoreID() ] = pdTRUE;
		traceTASK_SWITCHED_OUT();

		#if ( configGENERATE_RUN_TIME_STATS == 1 )
		{
				#ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
					portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
				#else
					ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
				#endif

				/* Add the amount of time the task has been running to the
				accumulated time so far.  The time the task started running was
				stored in ulTaskSwitchedInTime.  Note that there is no overflow
				protection here so count values are only valid until the timer
				overflows.  The guard against negative values is to protect
				against suspect run time stat counter implementations - which
				are provided by the application, not the kernel. */
				taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
				if( ulTotalRunTime > ulTaskSwitchedInTime[ xPortGetCoreID() ] )
				{
					pxCurrentTCB[ xPortGetCoreID() ]->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime[ xPortGetCoreID() ] );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
				taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
				ulTaskSwitchedInTime[ xPortGetCoreID() ] = ulTotalRunTime;
		}
		#endif /* configGENERATE_RUN_TIME_STATS */

		/* Check for stack overflow, if configured. */
		taskFIRST_CHECK_FOR_STACK_OVERFLOW();
		taskSECOND_CHECK_FOR_STACK_OVERFLOW();

		/* Select a new task to run */

		/*
		 We cannot do taskENTER_CRITICAL_ISR(&xTaskQueueMutex); here because it saves the interrupt context to the task tcb, and we're
		 swapping that out here. Instead, we're going to do the work here ourselves. Because interrupts are already disabled, we only
		 need to acquire the mutex.
		*/
#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
		vPortCPUAcquireMutex( &xTaskQueueMutex, __FUNCTION__, __LINE__ );
#else
		vPortCPUAcquireMutex( &xTaskQueueMutex );
#endif

		unsigned portBASE_TYPE foundNonExecutingWaiter = pdFALSE, ableToSchedule = pdFALSE, resetListHead;
		portBASE_TYPE uxDynamicTopReady = uxTopReadyPriority;
		unsigned portBASE_TYPE holdTop=pdFALSE;

		/*
		 *  ToDo: This scheduler doesn't correctly implement the round-robin scheduling as done in the single-core
		 *  FreeRTOS stack when multiple tasks have the same priority and are all ready; it just keeps grabbing the
		 *  first one. ToDo: fix this.
		 *  (Is this still true? if any, there's the issue with one core skipping over the processes for the other
		 *  core, potentially not giving the skipped-over processes any time.)
		 */

		while ( ableToSchedule == pdFALSE && uxDynamicTopReady >= 0 )
		{
			resetListHead = pdFALSE;
			// Nothing to do for empty lists
			if (!listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxDynamicTopReady ] ) )) {

				ableToSchedule = pdFALSE;
				tskTCB * pxRefTCB;

				/* Remember the current list item so that we
				can detect if all items have been inspected.
				Once this happens, we move on to a lower
				priority list (assuming nothing is suitable
				for scheduling). Note: This can return NULL if
				the list index is at the listItem */
				pxRefTCB = pxReadyTasksLists[ uxDynamicTopReady ].pxIndex->pvOwner;

				if ((void*)pxReadyTasksLists[ uxDynamicTopReady ].pxIndex==(void*)&pxReadyTasksLists[ uxDynamicTopReady ].xListEnd) {
					//pxIndex points to the list end marker. Skip that and just get the next item.
					listGET_OWNER_OF_NEXT_ENTRY( pxRefTCB, &( pxReadyTasksLists[ uxDynamicTopReady ] ) );
				}

				do {
					listGET_OWNER_OF_NEXT_ENTRY( pxTCB, &( pxReadyTasksLists[ uxDynamicTopReady ] ) );
					/* Find out if the next task in the list is
					already being executed by another core */
					foundNonExecutingWaiter = pdTRUE;
					portBASE_TYPE i = 0;
					for ( i=0; i<portNUM_PROCESSORS; i++ ) {
						if (i == xPortGetCoreID()) {
							continue;
						} else if (pxCurrentTCB[i] == pxTCB) {
							holdTop=pdTRUE; //keep this as the top prio, for the other CPU
							foundNonExecutingWaiter = pdFALSE;
							break;
						}
					}

					if (foundNonExecutingWaiter == pdTRUE) {
						/* If the task is not being executed
						by another core and its affinity is
						compatible with the current one,
						prepare it to be swapped in */
						if (pxTCB->xCoreID == tskNO_AFFINITY) {
							pxCurrentTCB[xPortGetCoreID()] = pxTCB;
							ableToSchedule = pdTRUE;
						} else if (pxTCB->xCoreID == xPortGetCoreID()) {
							pxCurrentTCB[xPortGetCoreID()] = pxTCB;
							ableToSchedule = pdTRUE;
						} else {
							ableToSchedule = pdFALSE;
							holdTop=pdTRUE; //keep this as the top prio, for the other CPU
						}
					} else {
						ableToSchedule = pdFALSE;
					}

					if (ableToSchedule == pdFALSE) {
						resetListHead = pdTRUE;
					} else if ((ableToSchedule == pdTRUE) && (resetListHead == pdTRUE)) {
						tskTCB * pxResetTCB;
						do {
							listGET_OWNER_OF_NEXT_ENTRY( pxResetTCB, &( pxReadyTasksLists[ uxDynamicTopReady ] ) );
						} while(pxResetTCB != pxRefTCB);
					}
				} while ((ableToSchedule == pdFALSE) && (pxTCB != pxRefTCB));
			} else {
				if (!holdTop) --uxTopReadyPriority;
			}
			--uxDynamicTopReady;
		}

		traceTASK_SWITCHED_IN();
        xSwitchingContext[ xPortGetCoreID() ] = pdFALSE;

		//Exit critical region manually as well: release the mux now, interrupts will be re-enabled when we
		//exit the function.
#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
		vPortCPUReleaseMutex( &xTaskQueueMutex, __FUNCTION__, __LINE__ );
#else
		vPortCPUReleaseMutex( &xTaskQueueMutex );
#endif

#if CONFIG_FREERTOS_WATCHPOINT_END_OF_STACK
		vPortSetStackWatchpoint(pxCurrentTCB[xPortGetCoreID()]->pxStack);
#endif

	}
	portEXIT_CRITICAL_NESTED(irqstate);
}
/*-----------------------------------------------------------*/

void vTaskPlaceOnEventList( List_t * const pxEventList, const TickType_t xTicksToWait )
{
TickType_t xTimeToWake;

	configASSERT( pxEventList );

	taskENTER_CRITICAL(&xTaskQueueMutex);

	/* Place the event list item of the TCB in the appropriate event list.
	This is placed in the list in priority order so the highest priority task
	is the first to be woken by the event.  The queue that contains the event
	list is locked, preventing simultaneous access from interrupts. */
	vListInsert( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );

	/* The task must be removed from from the ready list before it is added to
	the blocked list as the same list item is used for both lists.  Exclusive
	access to the ready lists guaranteed because the scheduler is locked. */
	if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
	{
		/* The current task must be in a ready list, so there is no need to
		check, and the port reset macro can be called directly. */
		portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}

	#if ( INCLUDE_vTaskSuspend == 1 )
	{
		if( xTicksToWait == portMAX_DELAY )
		{
			/* Add the task to the suspended task list instead of a delayed task
			list to ensure the task is not woken by a timing event.  It will
			block indefinitely. */
            traceMOVED_TASK_TO_SUSPENDED_LIST(pxCurrentTCB[ xPortGetCoreID() ]);
			vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) );
		}
		else
		{
			/* Calculate the time at which the task should be woken if the event
			does not occur.  This may overflow but this doesn't matter, the
			scheduler will handle it. */
			xTimeToWake = xTickCount + xTicksToWait;
			prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
		}
	}
	#else /* INCLUDE_vTaskSuspend */
	{
			/* Calculate the time at which the task should be woken if the event does
			not occur.  This may overflow but this doesn't matter, the scheduler
			will handle it. */
			xTimeToWake = xTickCount + xTicksToWait;
			prvAddCurrentTaskToDelayedList( xTimeToWake );
	}
	#endif /* INCLUDE_vTaskSuspend */

	taskEXIT_CRITICAL(&xTaskQueueMutex);

}
/*-----------------------------------------------------------*/

void vTaskPlaceOnUnorderedEventList( List_t * pxEventList, const TickType_t xItemValue, const TickType_t xTicksToWait )
{
TickType_t xTimeToWake;

	configASSERT( pxEventList );

	taskENTER_CRITICAL(&xTaskQueueMutex);

	/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
	the event groups implementation. */
	configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] != 0 );

	/* Store the item value in the event list item.  It is safe to access the
	event list item here as interrupts won't access the event list item of a
	task that is not in the Blocked state. */
	listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );

	/* Place the event list item of the TCB at the end of the appropriate event
	list.  It is safe to access the event list here because it is part of an
	event group implementation - and interrupts don't access event groups
	directly (instead they access them indirectly by pending function calls to
	the task level). */
	vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );

	/* The task must be removed from the ready list before it is added to the
	blocked list.  Exclusive access can be assured to the ready list as the
	scheduler is locked. */
	if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
	{
		/* The current task must be in a ready list, so there is no need to
		check, and the port reset macro can be called directly. */
		portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}

	#if ( INCLUDE_vTaskSuspend == 1 )
	{
		if( xTicksToWait == portMAX_DELAY )
		{
			/* Add the task to the suspended task list instead of a delayed task
			list to ensure it is not woken by a timing event.  It will block
			indefinitely. */
			vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) );
		}
		else
		{
			/* Calculate the time at which the task should be woken if the event
			does not occur.  This may overflow but this doesn't matter, the
			kernel will manage it correctly. */
			xTimeToWake = xTickCount + xTicksToWait;
			prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
		}
	}
	#else /* INCLUDE_vTaskSuspend */
	{
			/* Calculate the time at which the task should be woken if the event does
			not occur.  This may overflow but this doesn't matter, the kernel
			will manage it correctly. */
			xTimeToWake = xTickCount + xTicksToWait;
			prvAddCurrentTaskToDelayedList( xTimeToWake );
	}
	#endif /* INCLUDE_vTaskSuspend */

	taskEXIT_CRITICAL(&xTaskQueueMutex);
}
/*-----------------------------------------------------------*/

#if configUSE_TIMERS == 1

	void vTaskPlaceOnEventListRestricted( List_t * const pxEventList, const TickType_t xTicksToWait )
	{
	TickType_t xTimeToWake;

		taskENTER_CRITICAL(&xTaskQueueMutex);
		configASSERT( pxEventList );

		/* This function should not be called by application code hence the
		'Restricted' in its name.  It is not part of the public API.  It is
		designed for use by kernel code, and has special calling requirements -
		it should be called from a critical section. */


		/* Place the event list item of the TCB in the appropriate event list.
		In this case it is assume that this is the only task that is going to
		be waiting on this event list, so the faster vListInsertEnd() function
		can be used in place of vListInsert. */
		vListInsertEnd( pxEventList, &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );

		/* We must remove this task from the ready list before adding it to the
		blocked list as the same list item is used for both lists.  This
		function is called form a critical section. */
		if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
		{
			/* The current task must be in a ready list, so there is no need to
			check, and the port reset macro can be called directly. */
			portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		/* Calculate the time at which the task should be woken if the event does
		not occur.  This may overflow but this doesn't matter. */
		xTimeToWake = xTickCount + xTicksToWait;

		traceTASK_DELAY_UNTIL();
		prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
		taskEXIT_CRITICAL(&xTaskQueueMutex);

	}

#endif /* configUSE_TIMERS */
/*-----------------------------------------------------------*/

BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
{
TCB_t *pxUnblockedTCB;
BaseType_t xReturn;
BaseType_t xTaskCanBeReady;
UBaseType_t i, uxTargetCPU;

	/* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION.  It can also be
	called from a critical section within an ISR. */
	taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
	/* The event list is sorted in priority order, so the first in the list can
	be removed as it is known to be the highest priority.  Remove the TCB from
	the delayed list, and add it to the ready list.

	If an event is for a queue that is locked then this function will never
	get called - the lock count on the queue will get modified instead.  This
	means exclusive access to the event list is guaranteed here.

	This function assumes that a check has already been made to ensure that
	pxEventList is not empty. */
	if ( ( listLIST_IS_EMPTY( pxEventList ) ) == pdFALSE ) {
		pxUnblockedTCB = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
		configASSERT( pxUnblockedTCB );
		( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );
	} else {
		taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
		return pdFALSE;
	}

	/* Determine if the task can possibly be run on either CPU now, either because the scheduler
	   the task is pinned to is running or because a scheduler is running on any CPU. */
	xTaskCanBeReady = pdFALSE;
	if ( pxUnblockedTCB->xCoreID == tskNO_AFFINITY ) {
		uxTargetCPU = xPortGetCoreID();
		for (i = 0; i < portNUM_PROCESSORS; i++) {
			if ( uxSchedulerSuspended[ i ] == ( UBaseType_t ) pdFALSE ) {
				xTaskCanBeReady = pdTRUE;
				break;
			}
		}
	} else {
		uxTargetCPU = pxUnblockedTCB->xCoreID;
		xTaskCanBeReady = uxSchedulerSuspended[ uxTargetCPU ] == ( UBaseType_t ) pdFALSE;

	}

	if( xTaskCanBeReady )
	{
		( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
		prvAddTaskToReadyList( pxUnblockedTCB );
	}
	else
	{
		/* The delayed and ready lists cannot be accessed, so hold this task
		pending until the scheduler is resumed on this CPU. */
		vListInsertEnd( &( xPendingReadyList[ uxTargetCPU ] ), &( pxUnblockedTCB->xEventListItem ) );
	}

	if ( tskCAN_RUN_HERE(pxUnblockedTCB->xCoreID) && pxUnblockedTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
	{
		/* Return true if the task removed from the event list has a higher
		priority than the calling task.  This allows the calling task to know if
		it should force a context switch now. */
		xReturn = pdTRUE;

		/* Mark that a yield is pending in case the user is not using the
		"xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
		xYieldPending[ xPortGetCoreID() ] = pdTRUE;
	}
	else if ( pxUnblockedTCB->xCoreID != xPortGetCoreID() )
	{
		taskYIELD_OTHER_CORE( pxUnblockedTCB->xCoreID, pxUnblockedTCB->uxPriority );
		xReturn = pdFALSE;
	}
	else
	{
		xReturn = pdFALSE;
	}

	#if( configUSE_TICKLESS_IDLE == 1 )
	{
		/* If a task is blocked on a kernel object then xNextTaskUnblockTime
		might be set to the blocked task's time out time.  If the task is
		unblocked for a reason other than a timeout xNextTaskUnblockTime is
		normally left unchanged, because it is automatically get reset to a new
		value when the tick count equals xNextTaskUnblockTime.  However if
		tickless idling is used it might be more important to enter sleep mode
		at the earliest possible time - so reset xNextTaskUnblockTime here to
		ensure it is updated at the earliest possible time. */
		prvResetNextTaskUnblockTime();
	}
	#endif
	taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);

	return xReturn;
}
/*-----------------------------------------------------------*/

BaseType_t xTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem, const TickType_t xItemValue )
{
TCB_t *pxUnblockedTCB;
BaseType_t xReturn;

	taskENTER_CRITICAL(&xTaskQueueMutex);
	/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
	the event flags implementation. */
	configASSERT( uxSchedulerSuspended[ xPortGetCoreID() ] != pdFALSE );

	/* Store the new item value in the event list. */
	listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );

	/* Remove the event list form the event flag.  Interrupts do not access
	event flags. */
	pxUnblockedTCB = ( TCB_t * ) listGET_LIST_ITEM_OWNER( pxEventListItem );
	configASSERT( pxUnblockedTCB );
	( void ) uxListRemove( pxEventListItem );

	/* Remove the task from the delayed list and add it to the ready list.  The
	scheduler is suspended so interrupts will not be accessing the ready
	lists. */
	( void ) uxListRemove( &( pxUnblockedTCB->xGenericListItem ) );
	prvAddTaskToReadyList( pxUnblockedTCB );

	if ( tskCAN_RUN_HERE(pxUnblockedTCB->xCoreID) && pxUnblockedTCB->uxPriority >= pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
	{
		/* Return true if the task removed from the event list has
		a higher priority than the calling task.  This allows
		the calling task to know if it should force a context
		switch now. */
		xReturn = pdTRUE;

		/* Mark that a yield is pending in case the user is not using the
		"xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */
		xYieldPending[ xPortGetCoreID() ] = pdTRUE;
	}
	else if ( pxUnblockedTCB->xCoreID != xPortGetCoreID() )
	{
		taskYIELD_OTHER_CORE( pxUnblockedTCB->xCoreID, pxUnblockedTCB->uxPriority );
		xReturn = pdFALSE;
	}
	else
	{
		xReturn = pdFALSE;
	}

	taskEXIT_CRITICAL(&xTaskQueueMutex);
	return xReturn;
}
/*-----------------------------------------------------------*/

void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
{
	configASSERT( pxTimeOut );
	pxTimeOut->xOverflowCount = xNumOfOverflows;
	pxTimeOut->xTimeOnEntering = xTickCount;
}
/*-----------------------------------------------------------*/

BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut, TickType_t * const pxTicksToWait )
{
BaseType_t xReturn;

	configASSERT( pxTimeOut );
	configASSERT( pxTicksToWait );

	taskENTER_CRITICAL(&xTaskQueueMutex);
	{
		/* Minor optimisation.  The tick count cannot change in this block. */
		const TickType_t xConstTickCount = xTickCount;

		#if ( INCLUDE_vTaskSuspend == 1 )
			/* If INCLUDE_vTaskSuspend is set to 1 and the block time specified is
			the maximum block time then the task should block indefinitely, and
			therefore never time out. */
			if( *pxTicksToWait == portMAX_DELAY )
			{
				xReturn = pdFALSE;
			}
			else /* We are not blocking indefinitely, perform the checks below. */
		#endif

		if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
		{
			/* The tick count is greater than the time at which vTaskSetTimeout()
			was called, but has also overflowed since vTaskSetTimeOut() was called.
			It must have wrapped all the way around and gone past us again. This
			passed since vTaskSetTimeout() was called. */
			xReturn = pdTRUE;
		}
		else if( ( xConstTickCount - pxTimeOut->xTimeOnEntering ) < *pxTicksToWait )
		{
			/* Not a genuine timeout. Adjust parameters for time remaining. */
			*pxTicksToWait -= ( xConstTickCount -  pxTimeOut->xTimeOnEntering );
			vTaskSetTimeOutState( pxTimeOut );
			xReturn = pdFALSE;
		}
		else
		{
			xReturn = pdTRUE;
		}
	}
	taskEXIT_CRITICAL(&xTaskQueueMutex);

	return xReturn;
}
/*-----------------------------------------------------------*/

void vTaskMissedYield( void )
{
	xYieldPending[ xPortGetCoreID() ] = pdTRUE;
}
/*-----------------------------------------------------------*/

#if ( configUSE_TRACE_FACILITY == 1 )

	UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
	{
	UBaseType_t uxReturn;
	TCB_t *pxTCB;

		if( xTask != NULL )
		{
			pxTCB = ( TCB_t * ) xTask;
			uxReturn = pxTCB->uxTaskNumber;
		}
		else
		{
			uxReturn = 0U;
		}

		return uxReturn;
	}

#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/

#if ( configUSE_TRACE_FACILITY == 1 )

	void vTaskSetTaskNumber( TaskHandle_t xTask, const UBaseType_t uxHandle )
	{
	TCB_t *pxTCB;

		if( xTask != NULL )
		{
			pxTCB = ( TCB_t * ) xTask;
			pxTCB->uxTaskNumber = uxHandle;
		}
	}

#endif /* configUSE_TRACE_FACILITY */

/*
 * -----------------------------------------------------------
 * The Idle task.
 * ----------------------------------------------------------
 *
 * The portTASK_FUNCTION() macro is used to allow port/compiler specific
 * language extensions.  The equivalent prototype for this function is:
 *
 * void prvIdleTask( void *pvParameters );
 *
 */
static portTASK_FUNCTION( prvIdleTask, pvParameters )
{
	/* Stop warnings. */
	( void ) pvParameters;

	for( ;; )
	{
		/* See if any tasks have been deleted. */
		prvCheckTasksWaitingTermination();

		#if ( configUSE_PREEMPTION == 0 )
		{
			/* If we are not using preemption we keep forcing a task switch to
			see if any other task has become available.  If we are using
			preemption we don't need to do this as any task becoming available
			will automatically get the processor anyway. */
			taskYIELD();
		}
		#endif /* configUSE_PREEMPTION */

		#if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
		{
			/* When using preemption tasks of equal priority will be
			timesliced.  If a task that is sharing the idle priority is ready
			to run then the idle task should yield before the end of the
			timeslice.

			A critical region is not required here as we are just reading from
			the list, and an occasional incorrect value will not matter.  If
			the ready list at the idle priority contains more than one task
			then a task other than the idle task is ready to execute. */
			if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )
			{
				taskYIELD();
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		#endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */

		#if ( configUSE_IDLE_HOOK == 1 )
		{
			extern void vApplicationIdleHook( void );

			/* Call the user defined function from within the idle task.  This
			allows the application designer to add background functionality
			without the overhead of a separate task.
			NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
			CALL A FUNCTION THAT MIGHT BLOCK. */
			vApplicationIdleHook();
		}
		#endif /* configUSE_IDLE_HOOK */
		#if ( CONFIG_FREERTOS_LEGACY_HOOKS == 1 )
		{
			/* Call the esp-idf hook system */
			esp_vApplicationIdleHook();
		}
		#endif /* CONFIG_FREERTOS_LEGACY_HOOKS */


		/* This conditional compilation should use inequality to 0, not equality
		to 1.  This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
		user defined low power mode	implementations require
		configUSE_TICKLESS_IDLE to be set to a value other than 1. */
		#if ( configUSE_TICKLESS_IDLE != 0 )
		{
		TickType_t xExpectedIdleTime;

			/* It is not desirable to suspend then resume the scheduler on
			each iteration of the idle task.  Therefore, a preliminary
			test of the expected idle time is performed without the
			scheduler suspended.  The result here is not necessarily
			valid. */
			xExpectedIdleTime = prvGetExpectedIdleTime();

			if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
			{
				taskENTER_CRITICAL(&xTaskQueueMutex);
				{
					/* Now the scheduler is suspended, the expected idle
					time can be sampled again, and this time its value can
					be used. */
					configASSERT( xNextTaskUnblockTime >= xTickCount );
					xExpectedIdleTime = prvGetExpectedIdleTime();

					if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
					{
						traceLOW_POWER_IDLE_BEGIN();
						portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
						traceLOW_POWER_IDLE_END();
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
				}
				taskEXIT_CRITICAL(&xTaskQueueMutex);
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		#endif /* configUSE_TICKLESS_IDLE */
	}
}
/*-----------------------------------------------------------*/

#if configUSE_TICKLESS_IDLE != 0

	eSleepModeStatus eTaskConfirmSleepModeStatus( void )
	{
	eSleepModeStatus eReturn = eStandardSleep;
		taskENTER_CRITICAL(&xTaskQueueMutex);

		if( listCURRENT_LIST_LENGTH( &xPendingReadyList[ xPortGetCoreID() ] ) != 0 )
		{
			/* A task was made ready while the scheduler was suspended. */
			eReturn = eAbortSleep;
		}
		else if( xYieldPending[ xPortGetCoreID() ] != pdFALSE )
		{
			/* A yield was pended while the scheduler was suspended. */
			eReturn = eAbortSleep;
		}
		else
		{
			#if configUSE_TIMERS == 0
			{
				/* The idle task exists in addition to the application tasks. */
				const UBaseType_t uxNonApplicationTasks = 1;

				/* If timers are not being used and all the tasks are in the
				suspended list (which might mean they have an infinite block
				time rather than actually being suspended) then it is safe to
				turn all clocks off and just wait for external interrupts. */
				if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
				{
					eReturn = eNoTasksWaitingTimeout;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			#endif /* configUSE_TIMERS */
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		return eReturn;
	}
#endif /* configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/

#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )

#if ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS )

	void vTaskSetThreadLocalStoragePointerAndDelCallback( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue , TlsDeleteCallbackFunction_t xDelCallback)
	{
	TCB_t *pxTCB;

		if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
		{
			taskENTER_CRITICAL(&xTaskQueueMutex);
			pxTCB = prvGetTCBFromHandle( xTaskToSet );
			pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
			pxTCB->pvThreadLocalStoragePointersDelCallback[ xIndex ] = xDelCallback;
			taskEXIT_CRITICAL(&xTaskQueueMutex);
		}
	}

	void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue )
	{
		vTaskSetThreadLocalStoragePointerAndDelCallback( xTaskToSet, xIndex, pvValue, (TlsDeleteCallbackFunction_t)NULL );
	}


#else
	void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet, BaseType_t xIndex, void *pvValue )
	{
	TCB_t *pxTCB;

		if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
		{
			taskENTER_CRITICAL(&xTaskQueueMutex);
			pxTCB = prvGetTCBFromHandle( xTaskToSet );
			pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
			taskEXIT_CRITICAL(&xTaskQueueMutex);
		}
	}
#endif /* configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS */

#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
/*-----------------------------------------------------------*/

#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )

	void *pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery, BaseType_t xIndex )
	{
	void *pvReturn = NULL;
	TCB_t *pxTCB;

		if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
		{
			pxTCB = prvGetTCBFromHandle( xTaskToQuery );
			pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
		}
		else
		{
			pvReturn = NULL;
		}

		return pvReturn;
	}

#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */


#if ( portUSING_MPU_WRAPPERS == 1 )
/* ToDo: Check for multicore */
	void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify, const MemoryRegion_t * const xRegions )
	{
	TCB_t *pxTCB;

		UNTESTED_FUNCTION();
		/* If null is passed in here then we are deleting ourselves. */
		pxTCB = prvGetTCBFromHandle( xTaskToModify );

        vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
	}

#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/

static void prvInitialiseTaskLists( void )
{
UBaseType_t uxPriority;

	for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
	{
		vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
	}

	vListInitialise( &xDelayedTaskList1 );
	vListInitialise( &xDelayedTaskList2 );
	vListInitialise( &xPendingReadyList[ 0 ] );
	if (portNUM_PROCESSORS == 2) {
		vListInitialise( &xPendingReadyList[ 1 ] );
	}

	#if ( INCLUDE_vTaskDelete == 1 )
	{
		vListInitialise( &xTasksWaitingTermination );
	}
	#endif /* INCLUDE_vTaskDelete */

	#if ( INCLUDE_vTaskSuspend == 1 )
	{
		vListInitialise( &xSuspendedTaskList );
	}
	#endif /* INCLUDE_vTaskSuspend */

	/* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
	using list2. */
	pxDelayedTaskList = &xDelayedTaskList1;
	pxOverflowDelayedTaskList = &xDelayedTaskList2;
}
/*-----------------------------------------------------------*/

static void prvCheckTasksWaitingTermination( void )
{
	#if ( INCLUDE_vTaskDelete == 1 )
	{
		BaseType_t xListIsEmpty;
		int core = xPortGetCoreID();

		/* ucTasksDeleted is used to prevent vTaskSuspendAll() being called
		too often in the idle task. */
		while(uxTasksDeleted > ( UBaseType_t ) 0U )
		{
			TCB_t *pxTCB = NULL;

			taskENTER_CRITICAL(&xTaskQueueMutex);
			{
				xListIsEmpty = listLIST_IS_EMPTY( &xTasksWaitingTermination );
				if( xListIsEmpty == pdFALSE )
				{
					/* We only want to kill tasks that ran on this core because e.g. _xt_coproc_release needs to
					be called on the core the process is pinned on, if any */
					ListItem_t *target = listGET_HEAD_ENTRY(&xTasksWaitingTermination);
					for( ; target != listGET_END_MARKER(&xTasksWaitingTermination); target = listGET_NEXT(target) ){	//Walk the list
						TCB_t *tgt_tcb = ( TCB_t * )listGET_LIST_ITEM_OWNER(target);
						int affinity = tgt_tcb->xCoreID;
						//Self deleting tasks are added to Termination List before they switch context. Ensure they aren't still currently running
						if( pxCurrentTCB[core] == tgt_tcb || (portNUM_PROCESSORS > 1 && pxCurrentTCB[!core] == tgt_tcb) ){
							continue;	//Can't free memory of task that is still running
						}
						if(affinity == core || affinity == tskNO_AFFINITY){		//Find first item not pinned to other core
							pxTCB = tgt_tcb;
							break;
						}
					}
					if(pxTCB != NULL){
						( void ) uxListRemove( target );	//Remove list item from list
						--uxCurrentNumberOfTasks;
						--uxTasksDeleted;
					}
				}
			}
			taskEXIT_CRITICAL(&xTaskQueueMutex);	//Need to call deletion callbacks outside critical section

			if (pxTCB != NULL) {	//Call deletion callbacks and free TCB memory
				#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS )
					prvDeleteTLS( pxTCB );
				#endif
				prvDeleteTCB( pxTCB );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
				break;	//No TCB found that could be freed by this core, break out of loop
			}
		}
	}
	#endif /* vTaskDelete */
}
/*-----------------------------------------------------------*/

//This should be called with the taskqueuemutex grabbed. -JD
static void prvAddCurrentTaskToDelayedList( const BaseType_t xCoreID, const TickType_t xTimeToWake )
{
	/* The list item will be inserted in wake time order. */
	listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xCoreID ]->xGenericListItem ), xTimeToWake );

	if( xTimeToWake < xTickCount )
	{
        traceMOVED_TASK_TO_OVERFLOW_DELAYED_LIST();
		/* Wake time has overflowed.  Place this item in the overflow list. */
		vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB[ xCoreID ]->xGenericListItem ) );
	}
	else
	{
        traceMOVED_TASK_TO_DELAYED_LIST();
		/* The wake time has not overflowed, so the current block list is used. */
		vListInsert( pxDelayedTaskList, &( pxCurrentTCB[ xCoreID ]->xGenericListItem ) );

		/* If the task entering the blocked state was placed at the head of the
		list of blocked tasks then xNextTaskUnblockTime needs to be updated
		too. */
		if( xTimeToWake < xNextTaskUnblockTime )
		{
			xNextTaskUnblockTime = xTimeToWake;
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
}
/*-----------------------------------------------------------*/

BaseType_t xTaskGetAffinity( TaskHandle_t xTask )
{
	TCB_t *pxTCB;

	pxTCB = prvGetTCBFromHandle( xTask );

	return pxTCB->xCoreID;
}
/*-----------------------------------------------------------*/


#if ( configUSE_TRACE_FACILITY == 1 )

	static UBaseType_t prvListTaskWithinSingleList( TaskStatus_t *pxTaskStatusArray, List_t *pxList, eTaskState eState )
	{
	volatile TCB_t *pxNextTCB, *pxFirstTCB;
	UBaseType_t uxTask = 0;

		if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
		{
			listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );

			/* Populate an TaskStatus_t structure within the
			pxTaskStatusArray array for each task that is referenced from
			pxList.  See the definition of TaskStatus_t in task.h for the
			meaning of each TaskStatus_t structure member. */
			do
			{
				listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );

				pxTaskStatusArray[ uxTask ].xHandle = ( TaskHandle_t ) pxNextTCB;
				pxTaskStatusArray[ uxTask ].pcTaskName = ( const char * ) &( pxNextTCB->pcTaskName [ 0 ] );
				pxTaskStatusArray[ uxTask ].xTaskNumber = pxNextTCB->uxTCBNumber;
				pxTaskStatusArray[ uxTask ].eCurrentState = eState;
				pxTaskStatusArray[ uxTask ].uxCurrentPriority = pxNextTCB->uxPriority;

				#if ( configTASKLIST_INCLUDE_COREID == 1 )
				pxTaskStatusArray[ uxTask ].xCoreID = pxNextTCB->xCoreID;
				#endif /* configTASKLIST_INCLUDE_COREID */

				#if ( INCLUDE_vTaskSuspend == 1 )
				{
					/* If the task is in the suspended list then there is a chance
					it is actually just blocked indefinitely - so really it should
					be reported as being in the Blocked state. */
					if( eState == eSuspended )
					{
						if( listLIST_ITEM_CONTAINER( &( pxNextTCB->xEventListItem ) ) != NULL )
						{
							pxTaskStatusArray[ uxTask ].eCurrentState = eBlocked;
						}
					}
				}
				#endif /* INCLUDE_vTaskSuspend */

				#if ( configUSE_MUTEXES == 1 )
				{
					pxTaskStatusArray[ uxTask ].uxBasePriority = pxNextTCB->uxBasePriority;
				}
				#else
				{
					pxTaskStatusArray[ uxTask ].uxBasePriority = 0;
				}
				#endif

				#if ( configGENERATE_RUN_TIME_STATS == 1 )
				{
					pxTaskStatusArray[ uxTask ].ulRunTimeCounter = pxNextTCB->ulRunTimeCounter;
				}
				#else
				{
					pxTaskStatusArray[ uxTask ].ulRunTimeCounter = 0;
				}
				#endif

				#if ( portSTACK_GROWTH > 0 )
				{
					pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxEndOfStack );
				}
				#else
				{
					pxTaskStatusArray[ uxTask ].usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxNextTCB->pxStack );
				}
				#endif

				uxTask++;

			} while( pxNextTCB != pxFirstTCB );
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		return uxTask;
	}

#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/

#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) )

	static uint32_t prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
	{
	uint32_t ulCount = 0U;

		while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
		{
			pucStackByte -= portSTACK_GROWTH;
			ulCount++;
		}

		ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */

		return ( uint32_t ) ulCount;
	}

#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) ) */
/*-----------------------------------------------------------*/

#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )

	UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
	{
	TCB_t *pxTCB;
	uint8_t *pucEndOfStack;
	UBaseType_t uxReturn;

		pxTCB = prvGetTCBFromHandle( xTask );

		#if portSTACK_GROWTH < 0
		{
			pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
		}
		#else
		{
			pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
		}
		#endif

		uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );

		return uxReturn;
	}

#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
/*-----------------------------------------------------------*/

#if (INCLUDE_pxTaskGetStackStart == 1)

	uint8_t* pxTaskGetStackStart( TaskHandle_t xTask)
	{
		TCB_t *pxTCB;
		uint8_t* uxReturn;

		pxTCB = prvGetTCBFromHandle( xTask );
		uxReturn = (uint8_t*)pxTCB->pxStack;

		return uxReturn;
	}

#endif /* INCLUDE_pxTaskGetStackStart */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskDelete == 1 )

	static void prvDeleteTCB( TCB_t *pxTCB )
	{
		/* This call is required for any port specific cleanup related to task.
		It must be above the vPortFree() calls. */
		portCLEAN_UP_TCB( pxTCB );

		/* Free up the memory allocated by the scheduler for the task.  It is up
		to the task to free any memory allocated at the application level. */
		#if ( configUSE_NEWLIB_REENTRANT == 1 )
		{
			_reclaim_reent( &( pxTCB->xNewLib_reent ) );
		}
		#endif /* configUSE_NEWLIB_REENTRANT */

		#if ( portUSING_MPU_WRAPPERS == 1 )
			vPortReleaseTaskMPUSettings( &( pxTCB->xMPUSettings) );
		#endif

		#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
		{
			/* The task can only have been allocated dynamically - free both
			the stack and TCB. */
			vPortFreeAligned( pxTCB->pxStack );
			vPortFree( pxTCB );
		}
		#elif( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE == 1 )
		{
			/* The task could have been allocated statically or dynamically, so
			check what was statically allocated before trying to free the
			memory. */
			if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
			{
				/* Both the stack and TCB were allocated dynamically, so both
				must be freed. */
				vPortFreeAligned( pxTCB->pxStack );
				vPortFree( pxTCB );
			}
			else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
			{
				/* Only the stack was statically allocated, so the TCB is the
				only memory that must be freed. */
				vPortFreeAligned( pxTCB->pxStack );
				vPortFree( pxTCB );
			}
			else
			{
				/* Neither the stack nor the TCB were allocated dynamically, so
				nothing needs to be freed. */
				configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB	)
				mtCOVERAGE_TEST_MARKER();
			}
		}
		#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
	}

#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/

#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS )

	static void prvDeleteTLS( TCB_t *pxTCB )
	{
		configASSERT( pxTCB );
		for( int x = 0; x < ( UBaseType_t ) configNUM_THREAD_LOCAL_STORAGE_POINTERS; x++ )
		{
			if (pxTCB->pvThreadLocalStoragePointersDelCallback[ x ] != NULL)	//If del cb is set
			{
				pxTCB->pvThreadLocalStoragePointersDelCallback[ x ](x, pxTCB->pvThreadLocalStoragePointers[ x ]);	//Call del cb
			}
		}
	}

#endif /* ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 ) && ( configTHREAD_LOCAL_STORAGE_DELETE_CALLBACKS ) */
/*-----------------------------------------------------------*/

static void prvResetNextTaskUnblockTime( void )
{
TCB_t *pxTCB;

	if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
	{
		/* The new current delayed list is empty.  Set
		xNextTaskUnblockTime to the maximum possible value so it is
		extremely unlikely that the
		if( xTickCount >= xNextTaskUnblockTime ) test will pass until
		there is an item in the delayed list. */
		xNextTaskUnblockTime = portMAX_DELAY;
	}
	else
	{
		/* The new current delayed list is not empty, get the value of
		the item at the head of the delayed list.  This is the time at
		which the task at the head of the delayed list should be removed
		from the Blocked state. */
		( pxTCB ) = ( TCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList );
		xNextTaskUnblockTime = listGET_LIST_ITEM_VALUE( &( ( pxTCB )->xGenericListItem ) );
	}
}
/*-----------------------------------------------------------*/

#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )

	TaskHandle_t xTaskGetCurrentTaskHandle( void )
	{
	TaskHandle_t xReturn;
	unsigned state;

		state = portENTER_CRITICAL_NESTED();
		xReturn = pxCurrentTCB[ xPortGetCoreID() ];
		portEXIT_CRITICAL_NESTED(state);

		return xReturn;
	}

	TaskHandle_t xTaskGetCurrentTaskHandleForCPU( BaseType_t cpuid )
	{
	TaskHandle_t xReturn=NULL;

		//Xtensa-specific: the pxCurrentPCB pointer is atomic so we shouldn't need a lock.
		if (cpuid < portNUM_PROCESSORS) {
			xReturn = pxCurrentTCB[ cpuid ];
		}

		return xReturn;
	}


#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
/*-----------------------------------------------------------*/

#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )

	BaseType_t xTaskGetSchedulerState( void )
	{
	BaseType_t xReturn;
	unsigned state;

		state = portENTER_CRITICAL_NESTED();
		if( xSchedulerRunning == pdFALSE )
		{
			xReturn = taskSCHEDULER_NOT_STARTED;
		}
		else
		{
			if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
			{
				xReturn = taskSCHEDULER_RUNNING;
			}
			else
			{
				xReturn = taskSCHEDULER_SUSPENDED;
			}
		}
		portEXIT_CRITICAL_NESTED(state);

		return xReturn;
	}

#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
/*-----------------------------------------------------------*/

#if ( configUSE_MUTEXES == 1 )

	void vTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
	{
	TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;

		taskENTER_CRITICAL(&xTaskQueueMutex);
		/* If the mutex was given back by an interrupt while the queue was
		locked then the mutex holder might now be NULL. */
		if( pxMutexHolder != NULL )
		{
			if( pxTCB->uxPriority < pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
			{
				taskENTER_CRITICAL(&xTaskQueueMutex);
				/* Adjust the mutex holder state to account for its new
				priority.  Only reset the event list item value if the value is
				not	being used for anything else. */
				if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
				{
					listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}

				/* If the task being modified is in the ready state it will need to
				be moved into a new list. */
				if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxTCB->uxPriority ] ), &( pxTCB->xGenericListItem ) ) != pdFALSE )
				{
					if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
					{
						taskRESET_READY_PRIORITY( pxTCB->uxPriority );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}

					/* Inherit the priority before being moved into the new list. */
					pxTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority;
                    prvReaddTaskToReadyList( pxTCB );
				}
				else
				{
					/* Just inherit the priority. */
					pxTCB->uxPriority = pxCurrentTCB[ xPortGetCoreID() ]->uxPriority;
				}

				taskEXIT_CRITICAL(&xTaskQueueMutex);

				traceTASK_PRIORITY_INHERIT( pxTCB, pxCurrentTCB[ xPortGetCoreID() ]->uxPriority );
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		taskEXIT_CRITICAL(&xTaskQueueMutex);

	}

#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/

#if ( configUSE_MUTEXES == 1 )

	BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
	{
	TCB_t * const pxTCB = ( TCB_t * ) pxMutexHolder;
	BaseType_t xReturn = pdFALSE;
		taskENTER_CRITICAL(&xTaskQueueMutex);

		if( pxMutexHolder != NULL )
		{
			configASSERT( pxTCB->uxMutexesHeld );
			( pxTCB->uxMutexesHeld )--;

			if( pxTCB->uxPriority != pxTCB->uxBasePriority )
			{
				/* Only disinherit if no other mutexes are held. */
				if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
				{
					taskENTER_CRITICAL(&xTaskQueueMutex);
					/* A task can only have an inhertied priority if it holds
					the mutex.  If the mutex is held by a task then it cannot be
					given from an interrupt, and if a mutex is given by the
					holding	task then it must be the running state task.  Remove
					the	holding task from the ready	list. */
					if( uxListRemove( &( pxTCB->xGenericListItem ) ) == ( UBaseType_t ) 0 )
					{
						taskRESET_READY_PRIORITY( pxTCB->uxPriority );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}

					/* Disinherit the priority before adding the task into the
					new	ready list. */
					traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
					pxTCB->uxPriority = pxTCB->uxBasePriority;

					/* Reset the event list item value.  It cannot be in use for
					any other purpose if this task is running, and it must be
					running to give back the mutex. */
					listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
                    prvReaddTaskToReadyList( pxTCB );

					/* Return true to indicate that a context switch is required.
					This is only actually required in the corner case whereby
					multiple mutexes were held and the mutexes were given back
					in an order different to that in which they were taken.
					If a context switch did not occur when the first mutex was
					returned, even if a task was waiting on it, then a context
					switch should occur when the last mutex is returned whether
					a task is waiting on it or not. */
					xReturn = pdTRUE;
					taskEXIT_CRITICAL(&xTaskQueueMutex);
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}

		taskEXIT_CRITICAL(&xTaskQueueMutex);
		return xReturn;
	}

#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/

/* For multicore, this assumes the vPortCPUAquireMutex is recursive, that is, it can be called multiple
   times and the release call will have to be called as many times for the mux to unlock. */

/* Gotcha (which seems to be deliberate in FreeRTOS, according to
http://www.freertos.org/FreeRTOS_Support_Forum_Archive/December_2012/freertos_PIC32_Bug_-_vTaskEnterCritical_6400806.html
) is that calling vTaskEnterCritical followed by vTaskExitCritical will leave the interrupts DISABLED when the scheduler
is not running.  Re-enabling the scheduler will re-enable the interrupts instead.

For ESP32 FreeRTOS, vTaskEnterCritical implements both portENTER_CRITICAL and portENTER_CRITICAL_ISR.
*/

#if ( portCRITICAL_NESTING_IN_TCB == 1 )

#include "portmux_impl.h"

#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
	void vTaskEnterCritical( portMUX_TYPE *mux, const char *function, int line )
#else
	void vTaskEnterCritical( portMUX_TYPE *mux )
#endif
	{
		BaseType_t oldInterruptLevel=0;
		BaseType_t schedulerRunning = xSchedulerRunning;
		if( schedulerRunning != pdFALSE )
		{
			//Interrupts may already be disabled (because we're doing this recursively) but we can't get the interrupt level after
			//vPortCPUAquireMutex, because it also may mess with interrupts. Get it here first, then later figure out if we're nesting
			//and save for real there.
			oldInterruptLevel=portENTER_CRITICAL_NESTED();
		}
#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
		vPortCPUAcquireMutexIntsDisabled( mux, portMUX_NO_TIMEOUT, function, line );
#else
		vPortCPUAcquireMutexIntsDisabled( mux, portMUX_NO_TIMEOUT );
#endif

		if( schedulerRunning != pdFALSE )
		{
			TCB_t *tcb = pxCurrentTCB[xPortGetCoreID()];
			BaseType_t newNesting = tcb->uxCriticalNesting + 1;
 			tcb->uxCriticalNesting = newNesting;
			if( newNesting == 1 )
			{
				//This is the first time we get called. Save original interrupt level.
				tcb->uxOldInterruptState = oldInterruptLevel;
			}

			/* Original FreeRTOS comment, saved for reference:
			This is not the interrupt safe version of the enter critical
			function so	assert() if it is being called from an interrupt
			context.  Only API functions that end in "FromISR" can be used in an
			interrupt. Only assert if the critical nesting count is 1 to
			protect against recursive calls if the assert function also uses a
			critical section. */

			/* DISABLED in the esp32 port - because of SMP, For ESP32
			FreeRTOS, vTaskEnterCritical implements both
			portENTER_CRITICAL and portENTER_CRITICAL_ISR. vTaskEnterCritical
			has to be used in way more places than before, and some are called
			both from ISR as well as non-ISR code, thus we re-organized
			vTaskEnterCritical to also work in ISRs. */
#if 0
			if( newNesting	== 1 )
			{
				portASSERT_IF_IN_ISR();
			}
#endif

		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

#endif /* portCRITICAL_NESTING_IN_TCB */
/*-----------------------------------------------------------*/


/*
For ESP32 FreeRTOS, vTaskExitCritical implements both portEXIT_CRITICAL and portEXIT_CRITICAL_ISR.
*/
#if ( portCRITICAL_NESTING_IN_TCB == 1 )

#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
	void vTaskExitCritical( portMUX_TYPE *mux, const char *function, int line )
#else
	void vTaskExitCritical( portMUX_TYPE *mux )
#endif
	{
#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
		vPortCPUReleaseMutexIntsDisabled( mux, function, line );
#else
		vPortCPUReleaseMutexIntsDisabled( mux );
#endif
		if( xSchedulerRunning != pdFALSE )
		{
			TCB_t *tcb = pxCurrentTCB[xPortGetCoreID()];
			BaseType_t nesting = tcb->uxCriticalNesting;
			if( nesting	 > 0U )
			{
				nesting--;
				tcb->uxCriticalNesting = nesting;

				if( nesting == 0U )
				{
					portEXIT_CRITICAL_NESTED(tcb->uxOldInterruptState);
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

#endif /* portCRITICAL_NESTING_IN_TCB */
/*-----------------------------------------------------------*/

#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )

	static char *prvWriteNameToBuffer( char *pcBuffer, const char *pcTaskName )
	{
	BaseType_t x;

		/* Start by copying the entire string. */
		strcpy( pcBuffer, pcTaskName );

		/* Pad the end of the string with spaces to ensure columns line up when
		printed out. */
		for( x = strlen( pcBuffer ); x < ( configMAX_TASK_NAME_LEN - 1 ); x++ )
		{
			pcBuffer[ x ] = ' ';
		}

		/* Terminate. */
		pcBuffer[ x ] = 0x00;

		/* Return the new end of string. */
		return &( pcBuffer[ x ] );
	}

#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
/*-----------------------------------------------------------*/

#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )

	void vTaskList( char * pcWriteBuffer )
	{
	TaskStatus_t *pxTaskStatusArray;
	volatile UBaseType_t uxArraySize, x;
	char cStatus;

		/*
		 * PLEASE NOTE:
		 *
		 * This function is provided for convenience only, and is used by many
		 * of the demo applications.  Do not consider it to be part of the
		 * scheduler.
		 *
		 * vTaskList() calls uxTaskGetSystemState(), then formats part of the
		 * uxTaskGetSystemState() output into a human readable table that
		 * displays task names, states and stack usage.
		 *
		 * vTaskList() has a dependency on the sprintf() C library function that
		 * might bloat the code size, use a lot of stack, and provide different
		 * results on different platforms.  An alternative, tiny, third party,
		 * and limited functionality implementation of sprintf() is provided in
		 * many of the FreeRTOS/Demo sub-directories in a file called
		 * printf-stdarg.c (note printf-stdarg.c does not provide a full
		 * snprintf() implementation!).
		 *
		 * It is recommended that production systems call uxTaskGetSystemState()
		 * directly to get access to raw stats data, rather than indirectly
		 * through a call to vTaskList().
		 */


		/* Make sure the write buffer does not contain a string. */
		*pcWriteBuffer = 0x00;

		/* Take a snapshot of the number of tasks in case it changes while this
		function is executing. */
		uxArraySize = uxCurrentNumberOfTasks;

		/* Allocate an array index for each task.  NOTE!  if
		configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
		equate to NULL. */
		pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );

		if( pxTaskStatusArray != NULL )
		{
			/* Generate the (binary) data. */
			uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );

			/* Create a human readable table from the binary data. */
			for( x = 0; x < uxArraySize; x++ )
			{
				switch( pxTaskStatusArray[ x ].eCurrentState )
				{
					case eReady:		cStatus = tskREADY_CHAR;
										break;

					case eBlocked:		cStatus = tskBLOCKED_CHAR;
										break;

					case eSuspended:	cStatus = tskSUSPENDED_CHAR;
										break;

					case eDeleted:		cStatus = tskDELETED_CHAR;
										break;

					default:			/* Should not get here, but it is included
										to prevent static checking errors. */
										cStatus = 0x00;
										break;
				}

				/* Write the task name to the string, padding with spaces so it
				can be printed in tabular form more easily. */
				pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );

				/* Write the rest of the string. */
#if configTASKLIST_INCLUDE_COREID
				sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\t%hd\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber, ( int ) pxTaskStatusArray[ x ].xCoreID );
#else
				sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber );
#endif
				pcWriteBuffer += strlen( pcWriteBuffer );
			}

			/* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
			is 0 then vPortFree() will be #defined to nothing. */
			vPortFree( pxTaskStatusArray );
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*----------------------------------------------------------*/

#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )

	void vTaskGetRunTimeStats( char *pcWriteBuffer )
	{
	TaskStatus_t *pxTaskStatusArray;
	volatile UBaseType_t uxArraySize, x;
	uint32_t ulTotalTime, ulStatsAsPercentage;

		#if( configUSE_TRACE_FACILITY != 1 )
		{
			#error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
		}
		#endif

		/*
		 * PLEASE NOTE:
		 *
		 * This function is provided for convenience only, and is used by many
		 * of the demo applications.  Do not consider it to be part of the
		 * scheduler.
		 *
		 * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
		 * of the uxTaskGetSystemState() output into a human readable table that
		 * displays the amount of time each task has spent in the Running state
		 * in both absolute and percentage terms.
		 *
		 * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
		 * function that might bloat the code size, use a lot of stack, and
		 * provide different results on different platforms.  An alternative,
		 * tiny, third party, and limited functionality implementation of
		 * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
		 * a file called printf-stdarg.c (note printf-stdarg.c does not provide
		 * a full snprintf() implementation!).
		 *
		 * It is recommended that production systems call uxTaskGetSystemState()
		 * directly to get access to raw stats data, rather than indirectly
		 * through a call to vTaskGetRunTimeStats().
		 */

		/* Make sure the write buffer does not contain a string. */
		*pcWriteBuffer = 0x00;

		/* Take a snapshot of the number of tasks in case it changes while this
		function is executing. */
		uxArraySize = uxCurrentNumberOfTasks;

		/* Allocate an array index for each task.  NOTE!  If
		configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
		equate to NULL. */
		pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) );

		if( pxTaskStatusArray != NULL )
		{
			/* Generate the (binary) data. */
			uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );

			/* For percentage calculations. */
			ulTotalTime /= 100UL;

			/* Avoid divide by zero errors. */
			if( ulTotalTime > 0 )
			{
				/* Create a human readable table from the binary data. */
				for( x = 0; x < uxArraySize; x++ )
				{
					/* What percentage of the total run time has the task used?
					This will always be rounded down to the nearest integer.
					ulTotalRunTimeDiv100 has already been divided by 100. */
				    /* Also need to consider total run time of all */
					ulStatsAsPercentage = (pxTaskStatusArray[ x ].ulRunTimeCounter/portNUM_PROCESSORS)/ ulTotalTime;

					/* Write the task name to the string, padding with
					spaces so it can be printed in tabular form more
					easily. */
					pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );

					if( ulStatsAsPercentage > 0UL )
					{
						#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
						{
							sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
						}
						#else
						{
							/* sizeof( int ) == sizeof( long ) so a smaller
							printf() library can be used. */
							sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage );
						}
						#endif
					}
					else
					{
						/* If the percentage is zero here then the task has
						consumed less than 1% of the total run time. */
						#ifdef portLU_PRINTF_SPECIFIER_REQUIRED
						{
							sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
						}
						#else
						{
							/* sizeof( int ) == sizeof( long ) so a smaller
							printf() library can be used. */
							sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter );
						}
						#endif
					}

					pcWriteBuffer += strlen( pcWriteBuffer );
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			/* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
			is 0 then vPortFree() will be #defined to nothing. */
			vPortFree( pxTaskStatusArray );
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) ) */
/*-----------------------------------------------------------*/

TickType_t uxTaskResetEventItemValue( void )
{
TickType_t uxReturn;
	taskENTER_CRITICAL(&xTaskQueueMutex);
	uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ) );

	/* Reset the event list item to its normal value - so it can be used with
	queues and semaphores. */
	listSET_LIST_ITEM_VALUE( &( pxCurrentTCB[ xPortGetCoreID() ]->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB[ xPortGetCoreID() ]->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
	taskEXIT_CRITICAL(&xTaskQueueMutex);

	return uxReturn;
}
/*-----------------------------------------------------------*/

#if ( configUSE_MUTEXES == 1 )

	void *pvTaskIncrementMutexHeldCount( void )
	{
	TCB_t *curTCB;

		/* If xSemaphoreCreateMutex() is called before any tasks have been created
		then pxCurrentTCB will be NULL. */
		taskENTER_CRITICAL(&xTaskQueueMutex);
		if( pxCurrentTCB[ xPortGetCoreID() ] != NULL )
		{
			( pxCurrentTCB[ xPortGetCoreID() ]->uxMutexesHeld )++;
		}
		curTCB = pxCurrentTCB[ xPortGetCoreID() ];
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		return curTCB;
	}

#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/

#if( configUSE_TASK_NOTIFICATIONS == 1 )

	uint32_t ulTaskNotifyTake( BaseType_t xClearCountOnExit, TickType_t xTicksToWait )
	{
	TickType_t xTimeToWake;
	uint32_t ulReturn;

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			/* Only block if the notification count is not already non-zero. */
			if( pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue == 0UL )
			{
				/* Mark this task as waiting for a notification. */
				pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState = eWaitingNotification;

				if( xTicksToWait > ( TickType_t ) 0 )
				{
					/* The task is going to block.  First it must be removed
					from the ready list. */
					if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
					{
						/* The current task must be in a ready list, so there is
						no need to check, and the port reset macro can be called
						directly. */
						portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}

					#if ( INCLUDE_vTaskSuspend == 1 )
					{
						if( xTicksToWait == portMAX_DELAY )
						{
							/* Add the task to the suspended task list instead
							of a delayed task list to ensure the task is not
							woken by a timing event.  It will block
							indefinitely. */
                            traceMOVED_TASK_TO_SUSPENDED_LIST(pxCurrentTCB[ xPortGetCoreID() ]);
							vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) );
						}
						else
						{
							/* Calculate the time at which the task should be
							woken if no notification events occur.  This may
							overflow but this doesn't matter, the scheduler will
							handle it. */
							xTimeToWake = xTickCount + xTicksToWait;
							prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
						}
					}
					#else /* INCLUDE_vTaskSuspend */
					{
							/* Calculate the time at which the task should be
							woken if the event does not occur.  This may
							overflow but this doesn't matter, the scheduler will
							handle it. */
							xTimeToWake = xTickCount + xTicksToWait;
							prvAddCurrentTaskToDelayedList( xTimeToWake );
					}
					#endif /* INCLUDE_vTaskSuspend */

					/* All ports are written to allow a yield in a critical
					section (some will yield immediately, others wait until the
					critical section exits) - but it is not something that
					application code should ever do. */
					portYIELD_WITHIN_API();
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			ulReturn = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue;

			if( ulReturn != 0UL )
			{
				if( xClearCountOnExit != pdFALSE )
				{
					pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue = 0UL;
				}
				else
				{
					( pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue )--;
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}

			pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState = eNotWaitingNotification;
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		return ulReturn;
	}

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if( configUSE_TASK_NOTIFICATIONS == 1 )

	BaseType_t xTaskNotifyWait( uint32_t ulBitsToClearOnEntry, uint32_t ulBitsToClearOnExit, uint32_t *pulNotificationValue, TickType_t xTicksToWait )
	{
	TickType_t xTimeToWake;
	BaseType_t xReturn;

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			/* Only block if a notification is not already pending. */
			if( pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState != eNotified )
			{
				/* Clear bits in the task's notification value as bits may get
				set	by the notifying task or interrupt.  This can be used to
				clear the value to zero. */
				pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue &= ~ulBitsToClearOnEntry;

				/* Mark this task as waiting for a notification. */
				pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState = eWaitingNotification;

				if( xTicksToWait > ( TickType_t ) 0 )
				{
					/* The task is going to block.  First it must be removed
					from the	ready list. */
					if( uxListRemove( &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) ) == ( UBaseType_t ) 0 )
					{
						/* The current task must be in a ready list, so there is
						no need to check, and the port reset macro can be called
						directly. */
						portRESET_READY_PRIORITY( pxCurrentTCB[ xPortGetCoreID() ]->uxPriority, uxTopReadyPriority );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}

					#if ( INCLUDE_vTaskSuspend == 1 )
					{
						if( xTicksToWait == portMAX_DELAY )
						{
							/* Add the task to the suspended task list instead
							of a delayed task list to ensure the task is not
							woken by a timing event.  It will block
							indefinitely. */
                            traceMOVED_TASK_TO_SUSPENDED_LIST(pxCurrentTCB[ xPortGetCoreID() ]);
							vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB[ xPortGetCoreID() ]->xGenericListItem ) );
						}
						else
						{
							/* Calculate the time at which the task should be
							woken if no notification events occur.  This may
							overflow but this doesn't matter, the scheduler will
							handle it. */
							xTimeToWake = xTickCount + xTicksToWait;
							prvAddCurrentTaskToDelayedList( xPortGetCoreID(), xTimeToWake );
						}
					}
					#else /* INCLUDE_vTaskSuspend */
					{
							/* Calculate the time at which the task should be
							woken if the event does not occur.  This may
							overflow but this doesn't matter, the scheduler will
							handle it. */
							xTimeToWake = xTickCount + xTicksToWait;
							prvAddCurrentTaskToDelayedList( xTimeToWake );
					}
					#endif /* INCLUDE_vTaskSuspend */

					/* All ports are written to allow a yield in a critical
					section (some will yield immediately, others wait until the
					critical section exits) - but it is not something that
					application code should ever do. */
					portYIELD_WITHIN_API();
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			if( pulNotificationValue != NULL )
			{
				/* Output the current notification value, which may or may not
				have changed. */
				*pulNotificationValue = pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue;
			}

			/* If eNotifyValue is set then either the task never entered the
			blocked state (because a notification was already pending) or the
			task unblocked because of a notification.  Otherwise the task
			unblocked because of a timeout. */
			if( pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState == eWaitingNotification )
			{
				/* A notification was not received. */
				xReturn = pdFALSE;
			}
			else
			{
				/* A notification was already pending or a notification was
				received while the task was waiting. */
				pxCurrentTCB[ xPortGetCoreID() ]->ulNotifiedValue &= ~ulBitsToClearOnExit;
				xReturn = pdTRUE;
			}

			pxCurrentTCB[ xPortGetCoreID() ]->eNotifyState = eNotWaitingNotification;
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		return xReturn;
	}

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if( configUSE_TASK_NOTIFICATIONS == 1 )

	BaseType_t xTaskNotify( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction )
	{
	TCB_t * pxTCB;
	eNotifyValue eOriginalNotifyState;
	BaseType_t xReturn = pdPASS;

		configASSERT( xTaskToNotify );
		pxTCB = ( TCB_t * ) xTaskToNotify;

		taskENTER_CRITICAL(&xTaskQueueMutex);
		{
			eOriginalNotifyState = pxTCB->eNotifyState;

			pxTCB->eNotifyState = eNotified;

			switch( eAction )
			{
				case eSetBits	:
					pxTCB->ulNotifiedValue |= ulValue;
					break;

				case eIncrement	:
					( pxTCB->ulNotifiedValue )++;
					break;

				case eSetValueWithOverwrite	:
					pxTCB->ulNotifiedValue = ulValue;
					break;

				case eSetValueWithoutOverwrite :
					if( eOriginalNotifyState != eNotified )
					{
						pxTCB->ulNotifiedValue = ulValue;
					}
					else
					{
						/* The value could not be written to the task. */
						xReturn = pdFAIL;
					}
					break;

				case eNoAction:
					/* The task is being notified without its notify value being
					updated. */
					break;
			}


			/* If the task is in the blocked state specifically to wait for a
			notification then unblock it now. */
			if( eOriginalNotifyState == eWaitingNotification )
			{
				( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
				prvAddTaskToReadyList( pxTCB );

				/* The task should not have been on an event list. */
				configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );

				if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
				{
					/* The notified task has a priority above the currently
					executing task so a yield is required. */
					portYIELD_WITHIN_API();
				}
				else if ( pxTCB->xCoreID != xPortGetCoreID() )
				{
					taskYIELD_OTHER_CORE(pxTCB->xCoreID, pxTCB->uxPriority);
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		taskEXIT_CRITICAL(&xTaskQueueMutex);

		return xReturn;
	}

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if( configUSE_TASK_NOTIFICATIONS == 1 )

	BaseType_t xTaskNotifyFromISR( TaskHandle_t xTaskToNotify, uint32_t ulValue, eNotifyAction eAction, BaseType_t *pxHigherPriorityTaskWoken )
	{
	TCB_t * pxTCB;
	eNotifyValue eOriginalNotifyState;
	BaseType_t xReturn = pdPASS;

		configASSERT( xTaskToNotify );

		pxTCB = ( TCB_t * ) xTaskToNotify;

		taskENTER_CRITICAL_ISR(&xTaskQueueMutex);

		{
			eOriginalNotifyState = pxTCB->eNotifyState;

			pxTCB->eNotifyState = eNotified;

			switch( eAction )
			{
				case eSetBits	:
					pxTCB->ulNotifiedValue |= ulValue;
					break;

				case eIncrement	:
					( pxTCB->ulNotifiedValue )++;
					break;

				case eSetValueWithOverwrite	:
					pxTCB->ulNotifiedValue = ulValue;
					break;

				case eSetValueWithoutOverwrite :
					if( eOriginalNotifyState != eNotified )
					{
						pxTCB->ulNotifiedValue = ulValue;
					}
					else
					{
						/* The value could not be written to the task. */
						xReturn = pdFAIL;
					}
					break;

				case eNoAction :
					/* The task is being notified without its notify value being
					updated. */
					break;
			}


			/* If the task is in the blocked state specifically to wait for a
			notification then unblock it now. */
			if( eOriginalNotifyState == eWaitingNotification )
			{
				/* The task should not have been on an event list. */
				configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );

				if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
				{
					( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
					prvAddTaskToReadyList( pxTCB );
				}
				else
				{
					/* The delayed and ready lists cannot be accessed, so hold
					this task pending until the scheduler is resumed. */
					vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) );
				}

				if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
				{
					/* The notified task has a priority above the currently
					executing task so a yield is required. */
					if( pxHigherPriorityTaskWoken != NULL )
					{
						*pxHigherPriorityTaskWoken = pdTRUE;
					}
				}
				else if ( pxTCB->xCoreID != xPortGetCoreID() )
				{
					taskYIELD_OTHER_CORE( pxTCB->xCoreID, pxTCB->uxPriority );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
		}
		taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);

		return xReturn;
	}

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if( configUSE_TASK_NOTIFICATIONS == 1 )

	void vTaskNotifyGiveFromISR( TaskHandle_t xTaskToNotify, BaseType_t *pxHigherPriorityTaskWoken )
	{
	TCB_t * pxTCB;
	eNotifyValue eOriginalNotifyState;

		configASSERT( xTaskToNotify );


		pxTCB = ( TCB_t * ) xTaskToNotify;

		taskENTER_CRITICAL_ISR(&xTaskQueueMutex);
		{
			eOriginalNotifyState = pxTCB->eNotifyState;
			pxTCB->eNotifyState = eNotified;

			/* 'Giving' is equivalent to incrementing a count in a counting
			semaphore. */
			( pxTCB->ulNotifiedValue )++;

			/* If the task is in the blocked state specifically to wait for a
			notification then unblock it now. */
			if( eOriginalNotifyState == eWaitingNotification )
			{
				/* The task should not have been on an event list. */
				configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );

				if( uxSchedulerSuspended[ xPortGetCoreID() ] == ( UBaseType_t ) pdFALSE )
				{
					( void ) uxListRemove( &( pxTCB->xGenericListItem ) );
					prvAddTaskToReadyList( pxTCB );
				}
				else
				{
					/* The delayed and ready lists cannot be accessed, so hold
					this task pending until the scheduler is resumed. */
					vListInsertEnd( &( xPendingReadyList[ xPortGetCoreID() ] ), &( pxTCB->xEventListItem ) );
				}

				if( tskCAN_RUN_HERE(pxTCB->xCoreID) && pxTCB->uxPriority > pxCurrentTCB[ xPortGetCoreID() ]->uxPriority )
				{
					/* The notified task has a priority above the currently
					executing task so a yield is required. */
					if( pxHigherPriorityTaskWoken != NULL )
					{
						*pxHigherPriorityTaskWoken = pdTRUE;
					}
				}
				else if ( pxTCB->xCoreID != xPortGetCoreID() )
				{
					taskYIELD_OTHER_CORE( pxTCB->xCoreID, pxTCB->uxPriority );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
		}
		taskEXIT_CRITICAL_ISR(&xTaskQueueMutex);
	}

#endif /* configUSE_TASK_NOTIFICATIONS */

#if ( configENABLE_TASK_SNAPSHOT == 1 )
	static void prvTaskGetSnapshot( TaskSnapshot_t *pxTaskSnapshotArray, UBaseType_t *uxTask, TCB_t *pxTCB )
	{
		if (pxTCB == NULL) {
			return;
		}
		pxTaskSnapshotArray[ *uxTask ].pxTCB = pxTCB;
		pxTaskSnapshotArray[ *uxTask ].pxTopOfStack = (StackType_t *)pxTCB->pxTopOfStack;
		#if( portSTACK_GROWTH < 0 )
		{
			pxTaskSnapshotArray[ *uxTask ].pxEndOfStack = pxTCB->pxEndOfStack;
		}
		#else
		{
			pxTaskSnapshotArray[ *uxTask ].pxEndOfStack = pxTCB->pxStack;
		}
		#endif
		(*uxTask)++;
	}

	static void prvTaskGetSnapshotsFromList( TaskSnapshot_t *pxTaskSnapshotArray, UBaseType_t *uxTask, const UBaseType_t uxArraySize, List_t *pxList )
	{
		TCB_t *pxNextTCB, *pxFirstTCB;

		if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
		{
			listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList );
			do
			{
				if( *uxTask >= uxArraySize )
					break;

				listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList );
				prvTaskGetSnapshot( pxTaskSnapshotArray, uxTask, pxNextTCB );
			} while( pxNextTCB != pxFirstTCB );
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}

	UBaseType_t uxTaskGetSnapshotAll( TaskSnapshot_t * const pxTaskSnapshotArray, const UBaseType_t uxArraySize, UBaseType_t * const pxTcbSz )
	{
		UBaseType_t uxTask = 0, i = 0;


		*pxTcbSz = sizeof(TCB_t);
		/* Fill in an TaskStatus_t structure with information on each
		task in the Ready state. */
		i = configMAX_PRIORITIES;
		do
		{
			i--;
			prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &( pxReadyTasksLists[ i ] ) );
		} while( i > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */

		/* Fill in an TaskStatus_t structure with information on each
		task in the Blocked state. */
		prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, ( List_t * ) pxDelayedTaskList );
		prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, ( List_t * ) pxOverflowDelayedTaskList );
		for (i = 0; i < portNUM_PROCESSORS; i++) {
			if( uxTask >= uxArraySize )
				break;
			prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &( xPendingReadyList[ i ] ) );
		}

		#if( INCLUDE_vTaskDelete == 1 )
		{
			prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &xTasksWaitingTermination );
		}
		#endif

		#if ( INCLUDE_vTaskSuspend == 1 )
		{
			prvTaskGetSnapshotsFromList( pxTaskSnapshotArray, &uxTask, uxArraySize, &xSuspendedTaskList );
		}
		#endif
		return uxTask;
	}

#endif

#ifdef FREERTOS_MODULE_TEST
	#include "tasks_test_access_functions.h"
#endif




离线

页脚

工信部备案:粤ICP备20025096号 Powered by FluxBB

感谢为中文互联网持续输出优质内容的各位老铁们。 QQ: 516333132, 微信(wechat): whycan_cn (哇酷网/挖坑网/填坑网) service@whycan.cn