页次: 1
https://gitee.com/artinchip/d12x-doc
可以在码云下载d12x-doc
这个截图就来自你说的链接里面的文档
Simple example of hardware decoding JPEG image.
Resolution 800x480. Decoding time 3-4ms.
Sources: jpgdec.7z
https://whycan.com/files/members/4572/girl.jpg
https://whycan.com/files/members/4572/flower.jpg
大佬你好,我移植了你的代码,测试了花,结果如下图,请问可能是什么原因?
花原图如下:
这个问题在现实生活中的应用,比如送外卖,外卖员需要把外卖送到每个客户手中,怎么走路径最短?
以下是 Dijkstra 算法的 C 语言实现:
#include <stdio.h>
#include <limits.h>
#define V 10 // 给定点的数量
#define AMI_INT_MAX AMI_INT
int graph[V][V] = { // 给定的邻接矩阵
{ 0, 4, 3, 0, 0, 0, 0, 8, 0, 0 },
{ 4, 0, 0, 0, 0, 0, 0, 11, 0, 0 },
{ 3, 0, 0, 7, 0, 0, 0, 0, 0, 0 },
{ 0, 0, 7, 0, 9, 14, 0, 0, 0, 0 },
{ 0, 0, 0, 9, 0, 10, 0, 0, 0, 0 },
{ 0, 0, 0, 14, 10, 0, 2, 0, 0, 0 },
{ 0, 0, 0, 0, 0, 2, 0, 1, 6, 0 },
{ 8, 11, 0, 0, 0, 0, 1, 0, 7, 0 },
{ 0, 0, 0, 0, 0, 0, 6, 7, 0, 5 },
{ 0, 0, 0, 0, 0, 0, 0, 0, 5, 0 },
};
int minDistance(int dist[], int visited[]) {
int minDist = AMI_INT_MAX, minDistIndex;
for (int i = 0; i < V; i++) {
if (!visited[i] && dist[i] <= minDist) {
minDist = dist[i];
minDistIndex = i;
}
}
return minDistIndex;
}
void dijkstra(int src) {
int dist[V], visited[V];
for (int i = 0; i < V; i++) {
dist[i] = AMI_INT_MAX;
visited[i] = 0;
}
dist[src] = 0;
for (int i = 0; i < V - 1; i++) {
int u = minDistance(dist, visited);
visited[u] = 1;
for (int v = 0; v < V; v++) {
if (!visited[v] && graph[u][v] && dist[u] != AMI_INT_MAX
&& dist[u] + graph[u][v] < dist[v]) {
dist[v] = dist[u] + graph[u][v];
}
}
}
printf("顶点\t距离\n");
for (int i = 0; i < V; i++) {
printf("%d\t%d\n", i, dist[i]);
}
}
int main() {
dijkstra(0);
return 0;
}
F1C100S开发裸机,需要用到内存管理,于是
看了分块式内存管理源码,很容易理解。再来看Xboot的动态内存管理源码,发现很复杂。
以下是源码
/*
* malloc.c
*/
#include <xconfigs.h>
#include <assert.h>
#include <spinlock.h>
#include <string.h>
#include <stdio.h>
#include <malloc.h>
#include <xboot/kobj.h>
#include <xboot/module.h>
/*
* Some macros.
*/
#define tlsf_cast(t, exp) ((t)(exp))
#define tlsf_min(a, b) ((a) < (b) ? (a) : (b))
#define tlsf_max(a, b) ((a) > (b) ? (a) : (b))
#define tlsf_assert assert
#define tlsf_insist(x) { tlsf_assert(x); if (!(x)) { status--; } }
#if defined(__ARM64__) || defined(__X64__) || (defined(__riscv) && (__riscv_xlen == 64))
# define TLSF_64BIT
#else
# undef TLSF_64BIT
#endif
/*
* Public constants
*/
enum tlsf_public
{
/*
* log2 of number of linear subdivisions of block sizes
*/
SL_INDEX_COUNT_LOG2 = 5,
};
/*
* Private constants
*/
enum tlsf_private
{
#if defined(TLSF_64BIT)
/*
* All allocation sizes and addresses are aligned to 16 bytes
*/
ALIGN_SIZE_LOG2 = 4,
#else
/*
* All allocation sizes and addresses are aligned to 8 bytes
*/
ALIGN_SIZE_LOG2 = 3,
#endif
ALIGN_SIZE = (1 << ALIGN_SIZE_LOG2),
#if defined(TLSF_64BIT)
FL_INDEX_MAX = 32,
#else
FL_INDEX_MAX = 30,
#endif
SL_INDEX_COUNT = (1 << SL_INDEX_COUNT_LOG2),
FL_INDEX_SHIFT = (SL_INDEX_COUNT_LOG2 + ALIGN_SIZE_LOG2),
FL_INDEX_COUNT = (FL_INDEX_MAX - FL_INDEX_SHIFT + 1),
SMALL_BLOCK_SIZE = (1 << FL_INDEX_SHIFT),
};
/*
* Block header structure
*/
typedef struct block_header_t
{
union
{
/*
* Points to the previous physical block
*/
struct block_header_t * prev_phys_block;
char align_data[ALIGN_SIZE];
};
/*
* The size of this block, excluding the block header
*/
size_t size;
/*
* Next and previous free blocks
*/
struct block_header_t * next_free;
struct block_header_t * prev_free;
} block_header_t;
/*
* The TLSF control structure.
*/
typedef struct control_t
{
/*
* Empty lists point at this block to indicate they are free.
*/
block_header_t block_null;
/*
* Bitmaps for free lists.
*/
unsigned int fl_bitmap;
unsigned int sl_bitmap[FL_INDEX_COUNT];
/*
* Head of free lists.
*/
block_header_t * blocks[FL_INDEX_COUNT][SL_INDEX_COUNT];
} control_t;
/*
* A type used for casting when doing pointer arithmetic.
*/
typedef ptrdiff_t tlsfptr_t;
/*
* Associated constants
*/
static const size_t block_header_free_bit = 1 << 0;
static const size_t block_header_prev_free_bit = 1 << 1;
static const size_t block_header_overhead = sizeof(size_t);
static const size_t block_start_offset = offsetof(block_header_t, size) + sizeof(size_t);
static const size_t block_size_min = sizeof(block_header_t) - sizeof(block_header_t *);
static const size_t block_size_max = tlsf_cast(size_t, 1) << FL_INDEX_MAX;
#if defined(__riscv)
static int tlsf_fls_generic(unsigned int word)
{
int bit = 32;
if (!word) bit -= 1;
if (!(word & 0xffff0000)) { word <<= 16; bit -= 16; }
if (!(word & 0xff000000)) { word <<= 8; bit -= 8; }
if (!(word & 0xf0000000)) { word <<= 4; bit -= 4; }
if (!(word & 0xc0000000)) { word <<= 2; bit -= 2; }
if (!(word & 0x80000000)) { word <<= 1; bit -= 1; }
return bit;
}
static int tlsf_ffs(unsigned int word)
{
return tlsf_fls_generic(word & (~word + 1)) - 1;
}
static int tlsf_fls(unsigned int word)
{
return tlsf_fls_generic(word) - 1;
}
#else
static int tlsf_ffs(unsigned int word)
{
return __builtin_ffs(word) - 1;
}
static int tlsf_fls(unsigned int word)
{
const int bit = word ? 32 - __builtin_clz(word) : 0;
return bit - 1;
}
#endif
#if defined(TLSF_64BIT)
static int tlsf_fls_sizet(size_t size)
{
int high = (int)(size >> 32);
int bits = 0;
if(high)
{
bits = 32 + tlsf_fls(high);
}
else
{
bits = tlsf_fls((int)size & 0xffffffff);
}
return bits;
}
#else
#define tlsf_fls_sizet tlsf_fls
#endif
static size_t block_get_size(const block_header_t * block)
{
return block->size & ~(block_header_free_bit | block_header_prev_free_bit);
}
static void block_set_size(block_header_t * block, size_t size)
{
const size_t oldsize = block->size;
block->size = size | (oldsize & (block_header_free_bit | block_header_prev_free_bit));
}
static int block_is_last(const block_header_t * block)
{
return (block_get_size(block) == 0);
}
static int block_is_free(const block_header_t * block)
{
return tlsf_cast(int, block->size & block_header_free_bit);
}
static void block_set_free(block_header_t * block)
{
block->size |= block_header_free_bit;
}
static void block_set_used(block_header_t * block)
{
block->size &= ~block_header_free_bit;
}
static int block_is_prev_free(const block_header_t * block)
{
return tlsf_cast(int, block->size & block_header_prev_free_bit);
}
static void block_set_prev_free(block_header_t * block)
{
block->size |= block_header_prev_free_bit;
}
static void block_set_prev_used(block_header_t * block)
{
block->size &= ~block_header_prev_free_bit;
}
static block_header_t * block_from_ptr(const void * ptr)
{
return tlsf_cast(block_header_t *, tlsf_cast(unsigned char*, ptr) - block_start_offset);
}
static void * block_to_ptr(const block_header_t * block)
{
return tlsf_cast(void *, tlsf_cast(unsigned char*, block) + block_start_offset);
}
static block_header_t * offset_to_block(const void * ptr, size_t size)
{
return tlsf_cast(block_header_t *, tlsf_cast(tlsfptr_t, ptr) + size);
}
static block_header_t * block_prev(const block_header_t * block)
{
return block->prev_phys_block;
}
static block_header_t * block_next(const block_header_t * block)
{
block_header_t * next = offset_to_block(block_to_ptr(block), block_get_size(block) - block_header_overhead);
tlsf_assert(!block_is_last(block));
return next;
}
static block_header_t * block_link_next(block_header_t * block)
{
block_header_t * next = block_next(block);
next->prev_phys_block = block;
return next;
}
static void block_mark_as_free(block_header_t * block)
{
block_header_t * next = block_link_next(block);
block_set_prev_free(next);
block_set_free(block);
}
static void block_mark_as_used(block_header_t * block)
{
block_header_t * next = block_next(block);
block_set_prev_used(next);
block_set_used(block);
}
static size_t align_up(size_t x, size_t align)
{
tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
return (x + (align - 1)) & ~(align - 1);
}
static size_t align_down(size_t x, size_t align)
{
tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
return x - (x & (align - 1));
}
static void * align_ptr(const void * ptr, size_t align)
{
const tlsfptr_t aligned = (tlsf_cast(tlsfptr_t, ptr) + (align - 1)) & ~(align - 1);
tlsf_assert(0 == (align & (align - 1)) && "must align to a power of two");
return tlsf_cast(void*, aligned);
}
static size_t adjust_request_size(size_t size, size_t align)
{
size_t adjust = 0;
if(size)
{
const size_t aligned = align_up(size, align);
if(aligned < block_size_max)
adjust = tlsf_max(aligned, block_size_min);
}
return adjust;
}
static void mapping_insert(size_t size, int * fli, int * sli)
{
int fl, sl;
if(size < SMALL_BLOCK_SIZE)
{
fl = 0;
sl = tlsf_cast(int, size) / (SMALL_BLOCK_SIZE / SL_INDEX_COUNT);
}
else
{
fl = tlsf_fls_sizet(size);
sl = tlsf_cast(int, size >> (fl - SL_INDEX_COUNT_LOG2)) ^ (1 << SL_INDEX_COUNT_LOG2);
fl -= (FL_INDEX_SHIFT - 1);
}
*fli = fl;
*sli = sl;
}
static void mapping_search(size_t size, int * fli, int * sli)
{
if(size >= (1 << SL_INDEX_COUNT_LOG2))
{
const size_t round = (1 << (tlsf_fls_sizet(size) - SL_INDEX_COUNT_LOG2)) - 1;
size += round;
}
mapping_insert(size, fli, sli);
}
static block_header_t * search_suitable_block(control_t * control, int * fli, int * sli)
{
int fl = *fli;
int sl = *sli;
unsigned int sl_map = control->sl_bitmap[fl] & (~0U << sl);
if(!sl_map)
{
const unsigned int fl_map = control->fl_bitmap & (~0 << (fl + 1));
if(!fl_map)
{
return 0;
}
fl = tlsf_ffs(fl_map);
*fli = fl;
sl_map = control->sl_bitmap[fl];
}
tlsf_assert(sl_map && "internal error - second level bitmap is null");
sl = tlsf_ffs(sl_map);
*sli = sl;
return control->blocks[fl][sl];
}
static void remove_free_block(control_t * control, block_header_t * block, int fl, int sl)
{
block_header_t * prev = block->prev_free;
block_header_t * next = block->next_free;
tlsf_assert(prev && "prev_free field can not be null");
tlsf_assert(next && "next_free field can not be null");
next->prev_free = prev;
prev->next_free = next;
if(control->blocks[fl][sl] == block)
{
control->blocks[fl][sl] = next;
if(next == &control->block_null)
{
control->sl_bitmap[fl] &= ~(1U << sl);
if(!control->sl_bitmap[fl])
{
control->fl_bitmap &= ~(1U << fl);
}
}
}
}
static void insert_free_block(control_t * control, block_header_t * block, int fl, int sl)
{
block_header_t * current = control->blocks[fl][sl];
tlsf_assert(current && "free list cannot have a null entry");
tlsf_assert(block && "cannot insert a null entry into the free list");
block->next_free = current;
block->prev_free = &control->block_null;
current->prev_free = block;
tlsf_assert(block_to_ptr(block) == align_ptr(block_to_ptr(block), ALIGN_SIZE) && "block not aligned properly");
control->blocks[fl][sl] = block;
control->fl_bitmap |= (1U << fl);
control->sl_bitmap[fl] |= (1U << sl);
}
static void block_remove(control_t * control, block_header_t * block)
{
int fl, sl;
mapping_insert(block_get_size(block), &fl, &sl);
remove_free_block(control, block, fl, sl);
}
static void block_insert(control_t * control, block_header_t * block)
{
int fl, sl;
mapping_insert(block_get_size(block), &fl, &sl);
insert_free_block(control, block, fl, sl);
}
static int block_can_split(block_header_t * block, size_t size)
{
return block_get_size(block) >= sizeof(block_header_t) + size;
}
static block_header_t * block_split(block_header_t * block, size_t size)
{
block_header_t * remaining = offset_to_block(block_to_ptr(block), size - block_header_overhead);
const size_t remain_size = block_get_size(block) - (size + ALIGN_SIZE);
tlsf_assert(block_to_ptr(remaining) == align_ptr(block_to_ptr(remaining), ALIGN_SIZE) && "remaining block not aligned properly");
tlsf_assert(block_get_size(block) == remain_size + size + ALIGN_SIZE);
block_set_size(remaining, remain_size);
tlsf_assert(block_get_size(remaining) >= block_size_min && "block split with invalid size");
block_set_size(block, size);
block_mark_as_free(remaining);
return remaining;
}
static block_header_t * block_absorb(block_header_t * prev, block_header_t * block)
{
tlsf_assert(!block_is_last(prev) && "previous block can't be last!");
prev->size += block_get_size(block) + ALIGN_SIZE;
block_link_next(prev);
return prev;
}
static block_header_t * block_merge_prev(control_t * control, block_header_t * block)
{
if(block_is_prev_free(block))
{
block_header_t* prev = block_prev(block);
tlsf_assert(prev && "prev physical block can't be null");
tlsf_assert(block_is_free(prev) && "prev block is not free though marked as such");
block_remove(control, prev);
block = block_absorb(prev, block);
}
return block;
}
static block_header_t * block_merge_next(control_t * control, block_header_t * block)
{
block_header_t* next = block_next(block);
tlsf_assert(next && "next physical block can't be null");
if(block_is_free(next))
{
tlsf_assert(!block_is_last(block) && "previous block can't be last!");
block_remove(control, next);
block = block_absorb(block, next);
}
return block;
}
static void block_trim_free(control_t * control, block_header_t * block, size_t size)
{
tlsf_assert(block_is_free(block) && "block must be free");
if(block_can_split(block, size))
{
block_header_t* remaining_block = block_split(block, size);
block_link_next(block);
block_set_prev_free(remaining_block);
block_insert(control, remaining_block);
}
}
static void block_trim_used(control_t * control, block_header_t * block, size_t size)
{
tlsf_assert(!block_is_free(block) && "block must be used");
if(block_can_split(block, size))
{
block_header_t* remaining_block = block_split(block, size);
block_set_prev_used(remaining_block);
remaining_block = block_merge_next(control, remaining_block);
block_insert(control, remaining_block);
}
}
static block_header_t * block_trim_free_leading(control_t * control, block_header_t * block, size_t size)
{
block_header_t * remaining_block = block;
if(block_can_split(block, size))
{
remaining_block = block_split(block, size - ALIGN_SIZE);
block_set_prev_free(remaining_block);
block_link_next(block);
block_insert(control, block);
}
return remaining_block;
}
static block_header_t * block_locate_free(control_t * control, size_t size)
{
int fl = 0, sl = 0;
block_header_t * block = 0;
if(size)
{
mapping_search(size, &fl, &sl);
if(fl < FL_INDEX_COUNT)
block = search_suitable_block(control, &fl, &sl);
}
if(block)
{
tlsf_assert(block_get_size(block) >= size);
remove_free_block(control, block, fl, sl);
}
return block;
}
static void * block_prepare_used(control_t * control, block_header_t * block, size_t size)
{
void * p = 0;
if(block)
{
block_trim_free(control, block, size);
block_mark_as_used(block);
p = block_to_ptr(block);
}
return p;
}
static void control_construct(control_t * control)
{
int i, j;
control->block_null.next_free = &control->block_null;
control->block_null.prev_free = &control->block_null;
control->fl_bitmap = 0;
for(i = 0; i < FL_INDEX_COUNT; ++i)
{
control->sl_bitmap[i] = 0;
for(j = 0; j < SL_INDEX_COUNT; ++j)
{
control->blocks[i][j] = &control->block_null;
}
}
}
static inline void * tlsf_add_pool(void * tlsf, void * mem, size_t bytes)
{
block_header_t * block;
block_header_t * next;
const size_t pool_bytes = align_down(bytes - block_header_overhead - ALIGN_SIZE, ALIGN_SIZE);
if(((ptrdiff_t)mem % ALIGN_SIZE) != 0)
return 0;
if(pool_bytes < block_size_min || pool_bytes > block_size_max)
return 0;
block = offset_to_block(mem, -(tlsfptr_t)block_header_overhead);
block_set_size(block, pool_bytes);
block_set_free(block);
block_set_prev_used(block);
block_insert(tlsf_cast(control_t*, tlsf), block);
next = block_link_next(block);
block_set_size(next, 0);
block_set_used(next);
block_set_prev_free(next);
return mem;
}
static inline void tlsf_remove_pool(void * tlsf, void * mem)
{
control_t * control = tlsf_cast(control_t *, tlsf);
block_header_t * block = offset_to_block(mem, -(int)block_header_overhead);
int fl = 0, sl = 0;
tlsf_assert(block_is_free(block) && "block should be free");
tlsf_assert(!block_is_free(block_next(block)) && "next block should not be free");
tlsf_assert(block_get_size(block_next(block)) == 0 && "next block size should be zero");
mapping_insert(block_get_size(block), &fl, &sl);
remove_free_block(control, block, fl, sl);
}
static inline void * tlsf_create(void * mem)
{
if(((tlsfptr_t)mem % ALIGN_SIZE) != 0)
return 0;
control_construct(tlsf_cast(control_t *, mem));
return tlsf_cast(void *, mem);
}
static inline void * tlsf_create_with_pool(void * mem, size_t bytes)
{
void * tlsf = tlsf_create(mem);
tlsf_add_pool(tlsf, (char *)mem + align_up(sizeof(control_t), ALIGN_SIZE), bytes - align_up(sizeof(control_t), ALIGN_SIZE));
return tlsf;
}
static inline void tlsf_destroy(void * mem)
{
(void)mem;
}
static inline void * tlsf_get(void * mem)
{
return tlsf_cast(void *, (char *)mem + align_up(sizeof(control_t), ALIGN_SIZE));
}
static inline void * tlsf_malloc(void * tlsf, size_t size)
{
control_t * control = tlsf_cast(control_t *, tlsf);
const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
block_header_t * block = block_locate_free(control, adjust);
return block_prepare_used(control, block, adjust);
}
static inline void * tlsf_memalign(void * tlsf, size_t align, size_t size)
{
control_t * control = tlsf_cast(control_t *, tlsf);
const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
const size_t gap_minimum = sizeof(block_header_t);
const size_t size_with_gap = adjust_request_size(adjust + align + gap_minimum, align);
const size_t aligned_size = (adjust && align > ALIGN_SIZE) ? size_with_gap : adjust;
block_header_t* block = block_locate_free(control, aligned_size);
tlsf_assert(sizeof(block_header_t) == block_size_min + block_header_overhead);
if(block)
{
void * ptr = block_to_ptr(block);
void * aligned = align_ptr(ptr, align);
size_t gap = tlsf_cast(size_t, tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
if(gap && (gap < gap_minimum))
{
const size_t gap_remain = gap_minimum - gap;
const size_t offset = tlsf_max(gap_remain, align);
const void * next_aligned = tlsf_cast(void *, tlsf_cast(tlsfptr_t, aligned) + offset);
aligned = align_ptr(next_aligned, align);
gap = tlsf_cast(size_t, tlsf_cast(tlsfptr_t, aligned) - tlsf_cast(tlsfptr_t, ptr));
}
if(gap)
{
tlsf_assert(gap >= gap_minimum && "gap size too small");
block = block_trim_free_leading(control, block, gap);
}
}
return block_prepare_used(control, block, adjust);
}
static inline void tlsf_free(void * tlsf, void * ptr)
{
if(ptr)
{
control_t * control = tlsf_cast(control_t *, tlsf);
block_header_t * block = block_from_ptr(ptr);
tlsf_assert(!block_is_free(block) && "block already marked as free");
block_mark_as_free(block);
block = block_merge_prev(control, block);
block = block_merge_next(control, block);
block_insert(control, block);
}
}
static inline void * tlsf_realloc(void * tlsf, void * ptr, size_t size)
{
control_t * control = tlsf_cast(control_t *, tlsf);
void * p = 0;
if(ptr && (size == 0))
{
tlsf_free(tlsf, ptr);
}
else if(!ptr)
{
p = tlsf_malloc(tlsf, size);
}
else
{
block_header_t * block = block_from_ptr(ptr);
block_header_t * next = block_next(block);
const size_t cursize = block_get_size(block);
const size_t combined = cursize + block_get_size(next) + block_header_overhead;
const size_t adjust = adjust_request_size(size, ALIGN_SIZE);
tlsf_assert(!block_is_free(block) && "block already marked as free");
if((adjust > cursize) && (!block_is_free(next) || adjust > combined))
{
p = tlsf_malloc(tlsf, size);
if(p)
{
const size_t minsize = tlsf_min(cursize, size);
memcpy(p, ptr, minsize);
tlsf_free(tlsf, ptr);
}
}
else
{
if(adjust > cursize)
{
block_merge_next(control, block);
block_mark_as_used(block);
}
block_trim_used(control, block, adjust);
p = ptr;
}
}
return p;
}
static inline void tlsf_info(void * tlsf, size_t * mused, size_t * mfree)
{
block_header_t * block = offset_to_block(tlsf, -(int)block_header_overhead);
*mused = 0;
*mfree = 0;
while(block && !block_is_last(block))
{
if(block_is_free(block))
*mfree += block_get_size(block);
else
*mused += block_get_size(block);
block = block_next(block);
}
}
void * mm_create(void * mem, size_t bytes)
{
return tlsf_create_with_pool(mem, bytes);
}
void mm_destroy(void * mem)
{
tlsf_destroy(mem);
}
void * mm_get(void * mem)
{
return tlsf_get(mem);
}
void * mm_add_pool(void * mm, void * mem, size_t bytes)
{
return tlsf_add_pool(mm, mem, bytes);
}
void mm_remove_pool(void * mm, void * mem)
{
tlsf_remove_pool(mm, mem);
}
void * mm_malloc(void * mm, size_t size)
{
return tlsf_malloc(mm, size);
}
void * mm_memalign(void * mm, size_t align, size_t size)
{
return tlsf_memalign(mm, align, size);
}
void * mm_realloc(void * mm, void * ptr, size_t size)
{
return tlsf_realloc(mm, ptr, size);
}
void mm_free(void * mm, void * ptr)
{
tlsf_free(mm, ptr);
}
void mm_info(void * mm, size_t * mused, size_t * mfree)
{
if(mused && mfree)
tlsf_info(mm, mused, mfree);
}
static void * __heap_pool = NULL;
static spinlock_t __heap_lock = SPIN_LOCK_INIT();
static void * __malloc(size_t size)
{
void * m;
if(__heap_pool)
{
spin_lock(&__heap_lock);
m = tlsf_malloc(__heap_pool, size);
spin_unlock(&__heap_lock);
return m;
}
return NULL;
}
extern __typeof(__malloc) malloc __attribute__((weak, alias("__malloc")));
static void * __memalign(size_t align, size_t size)
{
void * m;
if(__heap_pool)
{
spin_lock(&__heap_lock);
m = tlsf_memalign(__heap_pool, align, size);
spin_unlock(&__heap_lock);
return m;
}
return NULL;
}
extern __typeof(__memalign) memalign __attribute__((weak, alias("__memalign")));
static void * __realloc(void * ptr, size_t size)
{
void * m;
if(__heap_pool)
{
spin_lock(&__heap_lock);
m = tlsf_realloc(__heap_pool, ptr, size);
spin_unlock(&__heap_lock);
return m;
}
return NULL;
}
extern __typeof(__realloc) realloc __attribute__((weak, alias("__realloc")));
static void * __calloc(size_t nmemb, size_t size)
{
void * m;
if((m = malloc(nmemb * size)))
memset(m, 0, nmemb * size);
return m;
}
extern __typeof(__calloc) calloc __attribute__((weak, alias("__calloc")));
static void __free(void * ptr)
{
if(__heap_pool)
{
spin_lock(&__heap_lock);
tlsf_free(__heap_pool, ptr);
spin_unlock(&__heap_lock);
}
}
extern __typeof(__free) free __attribute__((weak, alias("__free")));
static void __meminfo(size_t * mused, size_t * mfree)
{
if(__heap_pool)
{
if(mused && mfree)
tlsf_info(mm_get(__heap_pool), mused, mfree);
}
}
extern __typeof(__meminfo) meminfo __attribute__((weak, alias("__meminfo")));
static struct kobj_t * search_class_memory_kobj(void)
{
struct kobj_t * kclass = kobj_search_directory_with_create(kobj_get_root(), "class");
return kobj_search_directory_with_create(kclass, "memory");
}
static ssize_t memory_read_meminfo(struct kobj_t * kobj, void * buf, size_t size)
{
size_t mused = 0;
size_t mfree = 0;
char * p = buf;
int len = 0;
meminfo(&mused, &mfree);
len += sprintf((char *)(p + len), " memory used: %ld\r\n", mused);
len += sprintf((char *)(p + len), " memory free: %ld\r\n", mfree);
return len;
}
void do_init_mem(void)
{
#ifndef __SANDBOX__
extern unsigned char __heap_start[];
extern unsigned char __heap_end[];
spin_lock_init(&__heap_lock);
__heap_pool = mm_create((void *)__heap_start, (size_t)(__heap_end - __heap_start));
#endif
kobj_add_regular(search_class_memory_kobj(), "meminfo", memory_read_meminfo, NULL, NULL);
}
不知道优缺点如何,有没有xboot的大神出来介绍以下?
有没有执行效率和内存利用率都很高的内存管理系统?
@xboot
void cg_memfill32(uint32_t * dst, uint32_t val, int len);
void cg_comp_solid_source(uint32_t * dst, int len, uint32_t color, uint32_t alpha);
void cg_comp_solid_source_over(uint32_t * dst, int len, uint32_t color, uint32_t alpha);
void cg_comp_solid_destination_in(uint32_t * dst, int len, uint32_t color, uint32_t alpha);
void cg_comp_solid_destination_out(uint32_t * dst, int len, uint32_t color, uint32_t alpha);
void cg_comp_source(uint32_t * dst, int len, uint32_t * src, uint32_t alpha);
void cg_comp_source_over(uint32_t * dst, int len, uint32_t * src, uint32_t alpha);
void cg_comp_destination_in(uint32_t * dst, int len, uint32_t * src, uint32_t alpha);
void cg_comp_destination_out(uint32_t * dst, int len, uint32_t * src, uint32_t alpha);
以上9个用例,我全部重写了,但是测试完所有例程,却只调用到3个,分别是:
cg_memfill32
cg_comp_solid_source_over
cg_comp_source_over
不知道剩下的那些怎么样才能用到。
附上底板资料和测试固件,核心板可以用了,由于时间关系,底板设计的很简单。
V3x测试固件.zip
V3x测试底板.zip
https://whycan.com/t_7639.html
F1C100S做的,输出AV信号接电视机的
不同的开发者需要用到不同的外设,一个开发板要满足尽可能多的开发者就要包含尽可能多的模块,这样对于单个开发者而言又有很多模块是用不着的。怎么解决呢?
模块化开发板被提出来了。设计一个底板,底板上有很多接口,每个接口可以插不同的模块,把其他外设都模块化,类似于电脑上的主板啊,内存条啊,显卡啊都是可以插拔的。然后把V3x设计成一个核心板,这个核心板也是可插拔的,这样又方便更换V3s,类似电脑CPU I5换I3。
想法提出来了,第一步先设计一个核心板的。
第一板核心板已经设计好了,目前正在打样,下一步就是设计一个底板了,然后再设计模块些。
原理图为PDF格式
PCB文件为PADS95版本
gerber文件包可以直接制板
bom文件和坐标文件可以用于生产贴片
未完待续。。。
USB otg Host 有没有希望呢,想用这个片子读写U盘
页次: 1